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The multimedia community has witnessed the rise of deep learning–based techniques in analyzing multime-
dia content more effectively. In the past decade, the convergence of deep-learning and multimedia analytics
has boosted the performance of several traditional tasks, such as classification, detection, and regression, and
has also fundamentally changed the landscape of several relatively new areas, such as semantic segmenta-
tion, captioning, and content generation. This article aims to review the development path of major tasks in
multimedia analytics and take a look into future directions. We start by summarizing the fundamental deep
techniques related to multimedia analytics, especially in the visual domain, and then review representative
high-level tasks powered by recent advances. Moreover, the performance review of popular benchmarks gives
a pathway to technology advancement and helps identify both milestone works and future directions.
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1 INTRODUCTION

Due to the advancement of multimodal sensors, today’s digital content is inherently multimedia,
for example, text, images, audio, and video. The multimedia data of interest covers a wide spec-
trum, ranging from text, audio, images, click-through logs, Web videos, EEG signals, to surveillance
videos. Visual content—that is, images and video, in particular—is becoming a new way of com-
municating among Internet users with the proliferation of sensor-rich mobile devices. Accelerated
by a tremendous increase in Internet bandwidth and storage space, multimedia data has been gen-
erated, published, and spread explosively, becoming an indispensable part of today’s big data.

Such large-scale multimedia data has generated challenges and opportunities for intelligent mul-
timedia analysis, for example, management, retrieval, recognition, categorization, visualization,
and generation. Meanwhile, with recent advances in deep-learning techniques, we are now able
to boost the intelligence of multimedia analysis significantly and initiate new research directions
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to analyze multimedia content. For instance, convolutional neural networks have demonstrated
high capability in image and video recognition, recurrent neural networks are widely exploited
in modeling temporal dynamics in videos, and generative adversarial networks are capable
of generating realistic images on demand. Therefore, deep learning for intelligent multimedia
analysis is becoming an emerging research area in the field of multimedia and computer vision.

Many multimedia tasks can be viewed as mapping multimedia content to a set of outputs with
different capacities, ranging from several bits to kilobytes. Multimedia analytics can therefore
be categorized as classification, detection, captioning, and segmentation, according to different
capacities of their outputs. After years of research, the output has evolved from single prediction
(e.g., class label) to structured output (e.g., bounding box, sentence and image). Generally
speaking, a larger output usually corresponds to a more challenging task.

This article reviews recent advances in deep learning–based multimedia analytics. The goal
is to review state-of-the-art deep-learning components and network architectures, to identify
typical scenarios and challenges emerging in multimedia analysis, and to discuss real-world
datasets and benchmarks for future directions. In Section 2, we start with the core building blocks
shared by different architectures. In Section 3, we review several representative high-level tasks,
including classification, detection, captioning, and semantic segmentation. Standard benchmarks
and the corresponding state-of-the-art are summarized in Section 4 to show a clear roadmap in
terms of performance. Conclusions and future directions are discussed in Section 5.

2 PRELIMINARY

In this section, we first review the basic building blocks of deep learning layers in Section 2.1, and
then discuss several widely adopted network architectures in Section 2.2.

2.1 Building Blocks

Most popular deep-learning frameworks are highly modularized, such that deep networks can be
easily constructed by a collection of interacting layers.

The convolution layer [56] applies the convolution operation over an input signal, which
is especially critical for multimedia visual data. Transposed convolution1 goes in the opposite
direction [125] and is widely adopted for upsampling in deblurring [115], image matting [133],
super resolution [58], image generation [100], and restoration [79].

The fully connected layer defines a linear transformation between nodes, where neurons
in one layer are connected to all neurons in another layer. A typical functionality is high-level
reasoning [56] after several convolution layers.

Activation [18, 33, 34, 77, 82] and pooling layers [56, 111] introduce nonlinearity into the net-
works, which have demonstrated their superior performance in multimedia analytics. In princi-
ple, activation defines the response mechanism for neuron outputs and pooling combines multiple
outputs at one layer into a single output in the next layer, which introduces a form of non-linear
downsampling.

The normalization layer [45, 121] is critical in stabilizing the training process and accelerating
convergence speed. For example, Batch Normalization [45] reduces the internal covariate shift in
the neural networks, leading to faster convergence.

The loss layer defines various loss functions for diverse purposes, ranging from L1, MSE, Cross

Entropy, Negative log likelihood losses to KL-divergence and Triplet Margin losses.
Optimizing deep networks is generally difficult. On one hand, different initializations [29, 38]

have a major impact on network convergence. On the other hand, the optimization algorithm

1In some literature, it is also referred to as fractionally strided convolution or deconvolution.
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is also important for convergence. The fundamental optimization technique is based on back-
propagation [108] via SGD [95, 110], Adam [52], LBFGS, Rprop, or RMSprop [31].

2.2 Network Architectures

2.2.1 Convolutional Neural Networks (CNN). The convolutional neural network was first intro-
duced decades ago [59] for recognizing ZIP codes, which was rather primitive at that time. Recent
advancements in computational hardware (GPU2) and massive training data [109] bring CNN ar-
chitectures [56] to a wide range of fields, such as object/scene/action detection, recognition, and
regression.

2.2.2 Recurrent Neural Networks (RNN). In addition to the feed-forward architecture, another
important branch is based on the recurrent structure RNNs to model temporal dynamics. Note
that this is essentially helpful for sequential signals, such as video, text, and audio. However, the
RNN suffers from the vanishing and exploding gradient problem. To address this problem, Long
Short-Term Memory (LSTM) captures the long-term dependencies with the cell state, while GRU
further combines the forget and input gates, and mergers the cell state and hidden state.

2.2.3 Generative Adversarial Networks (GAN). Generative Adversarial Networks (GAN) [30]
have gained great attention in recent years, which are usually composed of a generator and a
discriminator. A GAN defines a high-level objective, real or fake, rather than a specified loss func-
tion. Following this principle, many variants, for example, wGAN [3] and DCGAN [100], have
improved the original framework for generating more realistic and robust images. The Laplacian
Pyramid of Adversarial Networks [21] extends the GAN for progressively generating images with
higher resolutions. A more recent work by NVIDIA [49] further generates celebrity photos in
impressive quality. A conditional GAN [80] takes extra input for generating images based on a
constraint. Pix2pix [46] translates an image to another representation with a conditional GAN.
CycleGAN [154], DiscoGAN [51] and DualGAN [142] share the same idea for image translation
between different domains, where unpaired data is adopted in a self-supervised way. Moreover, a
conditional GAN is also applied for generating images conditioning on text descriptions [83, 102,
148].

3 HIGH-LEVEL TASKS

This section reviews high-level tasks in multimedia analytics built on deep techniques. This survey
covers a wide range of tasks in multimedia analytics, especially in the visual domain.

Figure 1 shows the overall landscape of multimedia analytics, which maps multimedia data
(blue) into diverse outputs (yellow). Below, we briefly summarize the high-level tasks according to
their output capacities (quantity of information).

• Image/Video → Label. This category maps multimedia content to a set of predefined la-
bels, which are mostly represented in several bits. Typical tasks include object/scene/action
classification.

• Image/Video → Region. Region-level multimedia understanding corresponds to object/
action detection, where one or several bounding boxes (10∼100b) are required to locate
the target object/action.

• Image/Video→ Sentence. Describing multimedia content with natural sentences or a para-
graph (0.1∼1KB) has been a fast-developing area in recent years. Typical tasks include
image/video captioning.

2Graphics Processing Unit.
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Fig. 1. A landscape of deep learning–based multimedia analytics.

• Image/Video → Image. Mapping visual content to an image is more challenging since it
requires pixel-level annotation/translation, where the structured output has much more
capacity. Typical tasks include semantic segmentation and image translation.

Generally speaking, larger output capacity leads to more difficulty. Image classification aims to
map an input image/video to one or multiple labels, while image captioning parses an input image
to a sentence. The difficulty of each task increases as the output capacity grows. Moreover, reverse
mapping (from left to right) is also valid for all of the above cases owing to recent advances in
GANs. In the following, we will review the four most representative tasks in multimedia analytics:
classification, detection, captioning, and semantic segmentation.

3.1 Classification

Classification is the most fundamental task in multimedia analytics. The work of LeCun in [59],
known as LeNet-5, serves as the basis for modern frameworks in the family of deep-learning tech-
niques. The structure of a CNN typically consists of stacked convolutional layers that are option-
ally followed by normalization or pooling layers. LeNet-5 and its variants achieved state-of-the-art
performance on several simple visual classification tasks, such as character recognition. However,
owing to the limited number of training instances and computational resources, LetNet-5 did not
perform well on more complex visual tasks. Recently, several new network structures have been
proposed to address the problem. In the following, we will briefly discuss the milestone CNN
architectures.

The first breakthrough structure, AlexNet, was proposed by Krizhevsky [56], which significantly
boosts the performance of large-scale image classification in the ImageNet Large Scale Visual
Recognition Competition (ILSVRC) of 2012. AlexNet contains eight learned layers: five convo-
lutional layers followed by three fully connected layers. Compared to LeNet-5, AlexNet improves
CNN learning in several ways: (1) data augmentation, (2) dropout, (3) ReLU nonlinearity, (4) local
response normalization and (5) overlapping pooling. Two novel components widely used in the
following works are ReLU and dropout. ReLU is defined as f (x ) = max(0,x ), which turns the neg-
ative input into zero. It has been demonstrated that networks using ReLU activation can be trained
several times faster than the non-saturating functions. During the learning of AlexNet, the dropout
technique is introduced to randomly set output of hidden neurons to zero with probability 0.5. In
this way, the dropped neurons will not contribute to the forward and backward propagation. With
dropout, substantial overfitting can be alleviated.

The success of AlexNet attributes to its powerful representation ability through multiple layers
of nonlinear transformation. Inspired by AlexNet, Network-in-Network (NIN) is proposed in [68]
to enhance the learned representation in neural networks. There are two major contributions in
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this CNN architecture: multiple linear perceptron convolution (MLP) and global average pooling.
Specifically, the standard linear convolution filter is replaced by a mini-network, including two
additional fully connected layers with nonlinear activation function. Each fully connected layer is
also equivalent to a convolution layer with a 1 × 1 convolution kernel. In this way, the interactions
across channels can be learned. In addition, deeper structure gives more capability approximating
more abstract representations of the latent concepts. Another contribution in NIN is the utility of
global average pooling to replace the fully connected layers for classification. The output of the
pooling layer is used as confidence of categories and directly fed into the softmax. Compared to a
fully connected layer, the new design contains less parameters to be learned and is less prone to
overfitting.

As a deeper network is able to improve discriminative ability, VGGNet [114] further pushes
the depth of the CNN to 16 and 19 layers, which correspond to VGG16 and VGG19, respectively.
The simple increase of depth is feasible owing to the utility of the 3 × 3 convolution kernel in
all of the layers. In contrast to AlexNet, where the first convolution layer enjoys relatively large
receptive fields using an 11 × 11 kernel, VGGNet adopts a stack of multiple 3 × 3 convolution layers
to archive large receptive fields. Meanwhile, the decision function becomes more discriminative
by increasing the non-linearity functions. Another advantage is that the number of parameters
can be controlled at a reasonable level. VGGNet is very appealing as its uniform architecture and
is frequently used for extracting features from images.

GoogleNet [118] is another powerful CNN structure consisting of up to 22 layers. The basic
component in GoogleNet is a novel CNN structure referred to as the Inception module, which
consists of several parallel convolution layers with different kernels sizes. The outputs of sub-
branches are concatenated into a single output. Compared with previous structures, filter-level
sparsity is intuitively introduced in the Inception module. Thus, the use of computational resources
can be significantly reduced, and the enlarged network is less prone to overfitting. To further re-
duce the number of parameters, dimension reduction is performed before the costly 3 × 3 and
5 × 5 layers by adding a 1 × 1 convolution layer. Also, a max pooling layer is included to summa-
rize the information from previous layer. By stacking several inception modules, both the depth
and width of a CNN are increased while maintaining an affordable computational cost. There are
several extensions upon the basic inception module. The 5 × 5 kernel is replaced by two 3 × 3 ker-
nels in Inception-v2 [119]. Another improvement is the proposal of a batch normalization (BN)
layer, which is widely used in the following networks. In Inception-v3 [119], the reduced parame-
ters and increased depth are achieved by using stacked 1 × 3 and 3 × 1 kernels rather than a single
3 × 3 kernel.

A deeper network causes two major problems: vanishing/exploding gradients and accuracy
degradation. The first problem has been largely addressed by using different kinds of normal-
ization strategies or adding auxiliary loss in middle layers, as in GoogleNet. However, when the
network starts converging, the accuracy gets saturated and degrades by adding more layers to
a structure with suitable depth. ResNet [37] is proposed to address the degradation problem by
explicitly learning residual functions with reference to the inputs rather than directly fitting the
desired mapping from input to output. The core idea is the introduction of an identity shortcut con-
nection. By simply stacking identity mappings, a deeper model should not cause a higher training
error than the shallower counterparts. The original underlying mapping H (x ) is approximated
as learning a residual function F (x ) = H (x ) − x , which would be easier to optimize. In addition,
residual block does not introduce additional cost. As a result, the depth of a CNN can be up to
152 layers. ResNet is further extended to ResNext [130], where split-transform-merge is adopted.
It is intuitively an Inception module using much more sub-branches to increase the dimension
of cardinality. In this way, similar performance can be achieved using a shallower network.
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Similarly, the residual connect is also introduced in the family of GoogleNet, known as Inception-
v4 architecture [117].

The great success of the shortcut connection has attracted much attention. The most repre-
sentative one is the DenseNet [43], which consists of several stacked dense blocks. Within the
dense block, each layer is connected to every subsequent layer in the feed-forward fashion. In
contrast to ResNet using summation, the feature maps of all preceding layers are concatenated
with that of current layer. In contrast to previous proposed architectures, DenseNet adopts very
narrow layers, for example, 12 feature maps. However, the concatenated input still contains many
feature maps. To address this problem, a bottleneck layer using a 1 × 1 convolution is introduced
to reduce the dimension before the 3 × 3 convolution. DenseNet enjoys several advantages, such
as alleviating the problem of vanishing gradient, strengthening information propagation, encour-
aging feature reuse, and computational efficiency. In [143], backward update is further incorpo-
rated into DenseNet, where several previous layers are connected to update the next layer, and
the newly updated layer is concatenated to the previous layer. In this way, the effectiveness of
forward and backward information flow can be maximized. Recently, a novel architectural unit
named Squeeze-and-Excitation (SE) block is proposed in [48], where interdependencies between
channels are modeled by re-weighting channel-wise feature responses. It has been demonstrated
that previous proposed network architectures can be further improved by integrating the SE unit.

Works on compact CNN architectures has also drawn great interests. SqueezeNet, proposed
in [44], achieves a similar accuracy as AlexNet, with 50x fewer parameters. The basic component
is the Fire module, comprised of a squeeze layer and an expanding layer. The squeeze layer use a
1 × 1 convolution to reduce the number of channels. The squeezed outputs further feed into the
expanding layer, which includes a mix of parallel 1 × 1 and 3 × 3 filters. We can see that Fire block
is fundamentally derived from the Inception module in GoogleNet. Another technique in model
size reduction is the utility of depth-wise separable convolution. Specifically, convolution is first
performed for each input feature map, followed by a standard 1 × 1 convolution to capture the cor-
relations across different channels. This structure has been successfully adopted in MobileNet [40]
and XCeption [17]. Instead of applying a filter on each channel, a more moderate way, named
group-wise convolution, is adopted in ShuffleNet [149], where input feature maps are separated
into several groups. The standard convolution is performed within each group. Cross-channel
information is integrated by shuffling all of the channels between two group-wise convolution
layers. A more efficient network, ShuffleNet-V2, using group convolution is proposed in [76] by
further considering the memory access cost. In addition, several practical guidelines for efficient
network design are introduced. Group convolution is also employed in CondenseNet [42], which is
a more efficient DenseNet architecture. In contrast to ShuffleNet, where the groups are predefined,
CondenseNet proposes to learn group convolution through a multiple training stage. In general,
1 ∗ 1 convolution and channel-wise separable convolution have been widely used in the design of
computation-efficient CNN architectures.

Video classification has also attracted intensive research interest in recent years. For example,
Simonyan and Zisserman [113] design two-stream ConvNets, which contains spatial and temporal
nets to capture the discriminative appearance feature and motion feature, respectively. Qiu et al.
[97] design a novel end-to-end deep quantization architecture by incorporating the Fisher Vector
encoding strategy into deep generative models. Later, in [120] and [98], 3D ConvNets are employed
to learn spatio-temporal video descriptors to capture appearance features and motion features in
a unified network. In general, the inputs of these architectures are often frames or short video
clips, making it difficult for the networks to capture long-term temporal information. To over-
come this drawback, the LSTM networks are exploited in [128, 129]. Li et al. [62, 63] propose a
multi-granular deep architecture and employ LSTM to incorporate long-term temporal dynamics
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based on multiple granularity features. More recently, several techniques have been proposed to
boost action recognition by incorporating an attention mechanism [61], human detector [60], or
temporal coherence [84]. By combining different components, the authors of [47, 96, 137] present
multi-model systems with higher classification accuracy for video classification.

3.2 Detection

In this section, we will review the most recent deep-learning methods on general object detection,
where both location and category information of the appeared objects should be provided. The
existing works can be roughly categorized into two groups: two-stage approach and one-stage
approach. The former uses a CNN classifier on several regions of interest (RoIs), and suspected
candidates are further merged as final results. In contrast, end-to-end approaches predict the lo-
cation and category in a single CNN network.

R-CNN [28] is one of the preliminary works on CNN-based object detection. In R-CNN, RoI
proposals are generated by selective search, which groups the adjacent pixels into candidate object
regions based on the texture, color, or intensity information. The category of each generated RoI
is determined by warping it to a standard CNN classifier. In R-CNN, the CNN is used only for
feature extraction. A linear support vector machine (SVM) is adopted for training the classifier.
Finally, the bounding boxes are refined using a regression model. R-CNN provides the first practical
solution for object detection using a CNN. However, the training is expensive both in the use of
computational resource and storage. Another major drawback is the slow inference, as it requires
a forward pass of the CNN for every RoI proposal.

The region proposals are actually invariably overlapped, causing computation waste in the re-
peated forward pass of the CNN. To address this problem, SPPNet [36] proposes spatial pyramid
pooling (SPP) layer on the last convolution layer of the CNN. The representation of each region
proposal is obtained by applying the SPP to pool the corresponding window of the feature maps
into a fixed-length feature vector. The SPP layer contains several predefined grid separations (e.g.,
1 × 1, 2 × 2, and 3 × 3) on any arbitrary windows. Feature pooling is applied within each grid. In
this way, the feature maps are extracted from the entire image only once. SPPNet accelerated the
R-CNN by 24 to 100x of the inference time. Following the multi-stage pipeline of R-CNN, the con-
volution layers cannot be updated during fine-tuning. To further improve speed and accuracy, Fast
R-CNN [27] adopts RoI pooling layer and multi-task learning techniques. RoI pooling using only
one pyramid layer is simply a special case of the SPP layer. In contrast to the SPPNet and R-CNN,
Fast R-CNN uses two learning tasks on top of the CNN that jointly optimizes a softmax classifier
and bounding box regression. Both detection quality and resource consuming are benefits of single
network training and inference.

The major bottleneck in the Fast R-CNN is the region proposal, which is not only time con-
suming but also generates around 2000 RoIs. To address this problem, the Faster R-CNN [104]
introduces a Region Proposal Network (RPN), which can directly regress the RoI bounding boxes.
Specifically, a sliding window is applied on the feature map. At each location, k region propos-
als are predicted simultaneously by k binary objectiveness classifiers and k coordinate regressors.
The k proposals and loss function are parameterized relative to k reference anchors with difference
scale and aspect ratio. The top 300 RoIs receiving highest confidence scores are further used as in-
put to the following Fast R-CNN object detection network. The advantage of the Faster R-CNN is
the shared convolution layers for the RPN and detection network. As such, region proposals are
nearly computationally cost free. To unify the RPN with the detection network, the two tasks are
trained alternatively by fixing the shared layers and fine-tuning the layers unique to each network
in turn. The two-stage design is further leveraged in the Mask R-CNN [35], where more accurate
spatial pooling is achieved by using RoIAlign, rather than RoI pooling used in the Faster R-CNN.
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In addition, more accurate localization of arbitrary shapes of objects is offered by introducing a
new branch for predicting an object mask.

In the Faster R-CNN, the inference can be implemented in an end-to-end fashion. Nevertheless,
the RPN and detection networks should be trained separately, even though they share full im-
age convolution features. In contrast, one-stage object detection approaches target for end-to-end
model training and testing. In YOLO [101], object detection is formulated as a single regression
problem that directly predicts the bounding boxes and categories from full images. Specifically,
the input image is divided into S × S grids. Each grid cell predicts B bounding boxes and confi-
dence scores, indicating the probability of an object appealing in the predicted bounding box. In
addition, each cell also predictsC conditional probabilities forC categories. Thus, the dimension of
network output is S × S × (B × 5 +C ). In contrast to the Faster R-CNN, both the bounding boxes
and categories are predicted using the features from the entire image. This would result in a sig-
nificant number of localization errors, as the spatial information is neglected. In YOLO-v2 [102],
anchor boxes proposed in the Faster R-CNN are employed. Each anchor box predicts the bounding
boxes and categories using features in the corresponding sub-region. As such, the number of final
predicted outputs is significantly increased to S × S × B × (5 +C ). YOLO-v2 exhibits better recall
and localization ability while causing a small decrease in accuracy.

SSD [73] is another efficient one-stage object detection architecture, which conveys the concept
of end-to-end regression in YOLO and anchor mechanism in the Faster R-CNN. For each anchor
box, both the bounding box offsets and confidences of all categories are predicted. The prediction
is performed on different resolutions of feature maps extracted from the backbone CNN network.
As different feature maps correspond to different minimum receptive fields on the input image, the
objects of various sizes and shapes are naturally handled by carefully designing the scale and ratio
of the anchor boxes. In addition, small convolution kernels are applied on the feature maps. The
computation cost is saved compared to the fully connected layers used in YOLO. For an M × N
feature map, SSD yields (C + 4) × B ×M × N outputs corresponding to C categories and B pre-
defined anchors. While the generated boxes are larger than those produced by YOLO and Faster
RCNN, most boxes can be filtered out by a confidence threshold. The remaining ones are refined
via non-maximum suppression (NMS).

One-stage approaches using dense sampling of RoI regions tend to be more efficient; neverthe-
less, they have trailed the accuracy of two-stage detectors. The performance decrease contributes
to the extreme foreground-background class imbalance. In You Only Look Once (YOLO) and
Single Shot MultiBox Detector (SSD), hard negative sampling strategies are applied to address this
problem. In contrast, focal loss [70], designed for one-stage detectors, alleviates the imbalance
problem by down-weighting the well-classified examples and, in turn, enhancing the importance
of misclassified examples. Some other works try to combine the advantages from different detec-
tion networks. For example, the feature pyramid network (FPN) [69] adopts pyramid networks for
two-stage object detection. The prediction is performed on multiple feature maps rather than the
last layer, as in the Faster R-CNN. In addition, the feature maps at the top layer, which is spatially
coarser and semantically stronger, is upsampled and merged into its nearest bottom layer. A similar
idea is used in the Reverse connection with Objectness prior Networks (RON) [54], where the RPN
is replaced by a learned objectness prior network. In [112], the Deeply Supervised Object Detector
(DSOD) is proposed by introducing the Dense Block in DenseNet to the Single Shot MultiBox
Detector (SSD) architecture. Each feature map in the front-end structure is downsampled and
concatenated into the low-resolution feature maps. In this way, the DSON is able to achieve a sim-
ilar performance by learning from scratch with the model fine-tuned from a pretrained backbone
network. This is essential in real-world applications, where the backbone networks are expensive
to be learned owing to limited training instances and computational resources. All milestone
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architectures rely on detecting objects individually, ignoring the appearance relationships between
instances. In [41], a relation network is proposed to process the target objects simultaneously by
modeling their relations following the attention mechanism. The lightweight relation network is
further used to replace the NMS, resulting in an end-to-end architecture. Recently, we have ob-
served several other improvements and modifications of the above state-of-the-art architectures,
such as the adaptive IOU thresholds in [152] and the scale invariance approach in [9].

3.3 Captioning

The research on image/video captioning has proceeded along three different dimensions: template-
based methods [53, 57, 81, 106, 134], search-based approaches [22, 25], and sequence learning
models [23, 78, 85, 86, 88, 123, 124, 126, 132, 136, 141, 144].

3.3.1 Template-Based Captioning. The template-based paradigm for captioning, in which each
sentence fragment (e.g., subject, verb, and object) is first aligned with detected words from image
content and then the sentence is generated with predefined language templates, has a long history.
One of the earliest successes for image captioning is the work of Yang et al., who use Hidden
Markov Model (HMM) to select the best objects, scenes, verbs, and prepositions with the highest
log-likelihood ratio for template-based sentence generation in [134]. Similarly, in [57], Kulkarni
et al. employ the Conditional Random Field (CRF) model to predict labeling based on the detected
objects, attributes, and prepositions and then generate a sentence with a template by filling in slots
with the most likely labeling. For video captioning, [53] builds a concept hierarchy of actions for
natural-language description of human activities. Later, in [106], Rohrbach et al. teach a CRF to
model the relationships between different components of the input video and generate descriptions
for video based on the predefined template. While the template-based approach is the leading
captioning paradigm in the earlier stage, most of them highly rely on the templates of sentences
and invariably generate sentences with the same syntactical structure.

3.3.2 Search-Based Captioning. To achieve human-level descriptions, several search-based
works attempt to “generate” sentences for an image/video by directly copying human-generated
sentences from other visually similar images/videos. The significant drawbacks of these models
have been that they cannot generate novel descriptions and the need to collect human-generated
sentences also makes the sentence pool hard to be scaled up. For instance, in [25], an intermediate
meaning space based on the triplet of object, action, and scene is proposed to measure the similar-
ity between image and sentence, where the top sentences are regarded as the generated sentences
for the target image. Recently, a simple k-nearest neighbor retrieval model was used in [22] and
the best or consensus caption was selected from the returned candidate captions, which even per-
formed as well as several state-of-the-art language-based models. Most recently, the search-based
paradigm was also widely leveraged in image/video commenting [11, 64] to produce diverse com-
ments depending on both visual content and emotional reaction.

3.3.3 Sequence Learning Captioning. The dominant paradigm in modern image/video caption-
ing is the sequence learning method, which uses the CNN plus RNN architectures to generate
novel sentences with more flexible syntactical structures. Here, the RNN architecture is employed
to model the probability of generating a word given previous words and images across the word
sequence. In particular, Vinyals et al. propose an end-to-end neural network architecture by using
LSTM to generate a sentence for an image in [126], which is further incorporated with soft/hard
attention mechanism in [132] to automatically focus on salient objects when generating corre-
sponding words. Moreover, in [127, 141], semantic attributes are shown to clearly boost image
captioning when injected into the existing state-of-the-art CNN plus RNN model; such attributes
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can be further leveraged as semantic attention [144] to enhance image captioning. In another work
by Yao et al. [139], attribute detectors are used in image captioning to describe novel objects. Most
recently, visual relationships have been integrated into image encoders to produce relation-aware,
region-level features in image captioning [140]. For video captioning, Venugopalan et al. present
an LSTM-based model to generate video descriptions with the mean pooling representation over
all frames in [124]. The framework is then extended by inputting both frames and optical flow
images into an encoder-decoder LSTM in [123]. Compared to mean pooling, Yao et al. propose
using the temporal attention mechanism to exploit temporal structure for video captioning [136].
Furthermore, inspired by the idea of learning visual-semantic embedding space in search [89, 138],
Pan et al. also consider the relevance between sentence semantics and video content as a regular-
izer in LSTM-based architecture [85]. Taking the inspiration from the use of semantic attributes
in image captioning, an LSTM with a transferred semantic attributes model is designed in [88] to
incorporate the transferred semantic attributes learned from both images and videos into the CNN
plus RNN framework for video captioning. Instead of describing video with a single sentence, a
hierarchical RNN in [147] is devised to further capture the inter-sentence dependency, targeting
for describing a long video with a paragraph consisting of multiple sentences. In contrast to the
video paragraph captioning with non-overlapping and annotated temporal intervals, a more chal-
lenging task—named dense video captioning—was recently studied in [55, 65, 137], which explore
both detecting and describing multiple events in a video. Most recently, as a brave extension of
video captioning (video to text), a novel temporal GANs-based architecture was developed in [87]
to enable text-to-video synthesis of real-world cooking videos from human-written descriptions.

3.3.4 A Typical Architecture for Image/Video Captioning. In this section, we introduce the typ-
ical solution for image/video captioning, a CNN plus RNN scheme, which is mainly inspired by
sequence learning models in machine translation [5, 116]. This CNN plus RNN scheme first en-
codes visual content (image/video) into a fixed dimensional vector via the CNN (2D/3D CNN) and
then decodes it to the output target sentence through the RNN.

Specifically, suppose that we have an image I or videoV with Nv sample frames/clips (uniform
sampling) to be described by a textual sentence S, where S = {w1,w2, . . . ,wNs

} consisting of Ns

words. Let Vi ∈ RDI , Vv ∈ RDv , and wt ∈ RDw denote the DI -dimensional image representations
of the image I , the Dv -dimensional video representations of the videoV , and the Dw -dimensional
textual features of the t th word in sentence S, respectively. As a sentence consists of a sequence of
words, a sentence can be represented by aDw × Ns matrix W ≡ [w1,w2, . . . ,wNs

], with each word
in the sentence as its column vector. Hence, the image/video sentence generation problem that we
exploit here can be generally formulated by minimizing the following energy loss function as

E (V,S) = − log Pr (S|V), (1)

which is the negative log probability of the correct textual sentence given the image/video con-
tent. Note that we use V ∈ {Vi ,Vv } for simplicity, that is, V denotes either image representations
Vi or video representations Vv in the image/video captioning task, respectively. Since the CNN
plus RNN scheme produces one word in the sentence at decoding stage, it is natural to apply a
chain rule to model the joint probability over the sequential words. Thus, the log probability of
the sentence is given by the sum of the log probabilities over each word, which can be expressed as

log Pr (S|V) =
Ns∑

t=1

log Pr(wt |V,w0, . . . ,wt−1). (2)

In the CNN plus RNN scheme, the above parametric distribution Pr(wt |V,w0, . . . ,wt−1) in
Equation (2) is commonly modeled with the LSTM network, which is a widely used type of RNN
and can capture long-term information in the sequential data by mapping sequences to sequences.
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Fig. 2. The common architecture of the CNN plus RNN scheme with attention mechanism for image/video

captioning (better viewed in color). A 2D CNN is employed to generate convolutional image representations

for the input image. For the input video, the corresponding sequence of video representations is produced

by using a 2D/3D CNN to extract visual features for sampled frames/clips. Both of the convolutional image

representations and the sequence of frame/clip representations can be treated as a context set containing a

number of fixed-dimensional context vectors. Each context vector corresponds to a certain spatial or temporal

location in the input image/video. An attention mechanism is devised to measure a normalized attention

distribution over all context vectors and thus achieve the attended image/video feature by aggregating all

of the context vectors weighted with attention. The attended image/video feature is also injected into LSTM

for boosting image/video captioning.

Taking inspiration from the attention mechanism in machine translation [5], a visual/temporal
attention mechanism tailored to image/video captioning [132, 136] was recently incorporated into
the CNN plus RNN scheme. To better summarize the architecture of the CNN plus RNN scheme
with the attention mechanism for image/video captioning, we depict its common architecture in
Figure 2. Unlike the CNN plus RNN scheme without an attention mechanism that takes the out-
puts of a fully connected layer as image representation, the convolutional image features, that
is, the output feature map of the convolutional layer that contains more spatial information, is
used here to represent input image. Suppose that the dimensions of the convolutional image fea-
tures are K × K × Di , where K × K is the number of regions in the feature map and Di represents
the dimension of the feature vector for each region. The local descriptor of each image region
is denoted as f

i
j ∈ RDi , j ∈ [1,K2], where j is the index of each region. Therefore, the whole im-

age feature map consisting of K2 Di -dimensional local descriptors for image I is represented as

FI = [f i
1, f

i
2, . . . , f

i
K 2 ] ∈ RDi×K 2

. Each local descriptor slices the feature map into different overlap-
ping regions in the raw image. We refer to these local descriptors as the feature cube of input image
in Figure 2. For input videoV , a 2D/3D CNN is adopted to extract visual features for each sampled
frame/clip, resulting in a temporal sequence of visual features FV = [fv

1 , f
v
2 , . . . , f

v
Nv

] ∈ RDv×Nv .

f
v
j ∈ RDv denotes the representation of the jth sampled frame/clip. Therefore, both of the con-

volutional image representations FI of the input image and the sequence of frame/clip represen-
tations FV of the input video can be treated as one kind of context set containing a number of
fixed-dimensional context vectors, which is denoted as F = [f1, f2, . . . , fN ] ∈ RD×N ∈ {FI , FV } in
general. Each context vector fj corresponds to a certain spatial or temporal location in the input
image/video.
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In many cases, the output word at decoding stage only relates to some regions of the input image
or several frames/clips of the input video. As a result, using one encoder to compress the whole
image or video into a global feature vector may lead to sub-optimal results owing to the noises
introduced from regions or frames/clips that are irrelevant to the output word. To dynamically pin-
point the regions or frames/clips that are highly relevant to the output word at each timestep and
further incorporate the contributions of different regions or frames/clips into producing image/
video representation that would be fed into the LSTM, an attention mechanism is employed over
the context set for boosting image/video captioning. Most specifically, at each timestep t , the atten-
tion mechanism first generates a normalized attention distribution over all of the context vectors
F = [f1, f2, . . . , fN ] depending on the previous output of LSTM ht−1:

at, j =Wa[tanh(Wf fj +Whht−1)], λt = so f tmax (at ), (3)

where at, j is the jth element of at , and Wa ∈ R1×Da , Wf ∈ RDa×D , and Wh ∈ RDa×Dh are trans-
formation matrices. λt ∈ RK denotes the normalized attention distribution and its jth element λt, j

is the attention probability of fj . Based on the attention distribution, we calculate the attended

image/video feature f̂t =
1
N

∑N
j=1 λt, j fj by aggregating all of the context vectors weighted with at-

tention. We further concatenate the attended image/video feature f̂t with the input word wt and
feed them into the LSTM, whose updating procedure is given as:

ht = f ([f̂t ,Ws wt ]), (4)

where f is the updating function within the LSTM and Ws ∈ RDs×Dw is the transformation matric
for input word wt . The output of the LSTM ht is leveraged to predict the next word wt+1 through
a softmax layer.

In the training stage, the LSTM in the decoder is typically optimized with cross-entropy loss,
which inevitably results in the discrepancy of evaluation between training and inference. Accord-
ingly, to further boost the image/video captioning model by amending the discrepancy, the authors
of [72, 105] devise a policy gradient optimization approach to directly optimize the LSTM with ex-
pected sentence-level reward loss as

Ep (V,S) = −ES∼pθ
[r (S)], (5)

where θ denotes the parameters of the LSTM that schedule a policy pθ for generating a sentence.
r (S) is the reward measured by comparing the generated sentence S to ground-truth sentences
over a non-differentiable evaluation metric.

3.4 Semantic Segmentation

Semantic segmentation is one of the most challenging tasks in multimedia and vision, which at-
tempts to understand the semantic meaning of every pixel. It assigns each pixel of an image a
semantic label. Compared to classification and detection, semantic segmentation requires dense
pixel-wise predictions and, thus, is much more challenging.

3.4.1 Traditional Approaches. Techniques developed before deep learning mostly rely on CRF
and operate on pixels or superpixels, where local evidence is incorporated in unary potential, and
label interactions are encoded with binary potentials.

3.4.2 FCN. A milestone for deep-based semantic segmentation is the Fully Convolutional Net-
work (FCN) [74], which introduces a full CNN architecture. It removes all fully connected layers;
thus, the input can be of arbitrary sizes and the output is structured for dense prediction. FCN
employs deconvolution for upsampling after a series of convolutions, making it an efficient and
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end-to-end architecture for per-pixel tasks such as semantic segmentation. Semantic segmentation
based on the FCN has been widely adopted in the literature and also extended to video semantic
segmentation, for example, [99].

3.4.3 Encoder-Decoder. Following the FCN, various techniques have been proposed for further
improvement. An encoder-decoder network is featured by its bottleneck and symmetric structure,
where the encoder gradually reduces the spatial dimension and the decoder recovers the details
with increasing spatial dimension. The most representative work is SegNet [4], where the upsam-
pling in the decoder is performed by using the pooling indices computed in the max pooling step
of the corresponding encoder. This makes learning and inference more efficient. SegNet is further
extended to Bayesian SegNet [50] by adding a DropOut layer. Moreover, shortcuts (e.g., U-Net
[107]) between encoder and decoder are usually adopted to better recover the details.

3.4.4 Dilated/Atrous Convolution. Dilated convolution [146] keeps the output resolution and
avoids upsampling, which uses dilated convolutions to aggregate multi-scale contextual informa-
tion without losing resolution.

DeepLab is a big branch for semantic segmentation. The main contribution includes the dilated
convolutions, atrous spatial pyramid pooling (ASPP), and fully connected CRF. DeepLabv1 [12]
uses atrous convolution to explicitly control the resolution at which feature responses are com-
puted within deep CNNs. DeepLabv2 [13] uses ASPP to robustly segment objects at multiple scales
with filters at multiple sampling rates and effective fields of views. DeepLabv3 [14] augments the
ASPP module with an image-level feature to capture longer-range information. Atrous convolu-
tion is adopted to extract output features at different output strides during training and evaluation,
which efficiently enables training BN at output stride= 16 and attains a high performance at output
stride = 8 during evaluation. DeepLabv3+ [15] extends [14] to include a simple yet effective de-
coder module to refine the segmentation, especially along object boundaries. Furthermore, in this
encoder-decoder structure, one can arbitrarily control the resolution of extracted encoder features
by atrous convolution to trade off precision and runtime.

3.4.5 Feature Ensemble. Another category is based on feature ensembling, which jointly con-
siders multi-scale or multi-level features in the network. Typical networks include RefineNet [67]
and PSPNet [151]. RefineNet adopts multi-path refinements by repeatedly using residual connec-
tions between upsampled multi-resolution feature maps. In contrast, PSPNet employs a pyramid
pooling module to generate different resolution feature maps, which are further concatenated after
several convolution lays and an upsampling lay. Both approaches achieve significant performance
improvements on several benchmark datasets.

3.4.6 Real-Time Semantic Segmentation. Due to the intensive pixel-level prediction, most of the
semantic segmentation approaches are time consuming and lack scalability. Some recent works
focus on more efficient semantic segmentation algorithms, which are essential for real-time appli-
cations such as autonomous driving. Most of the works rely on the design principles proposed in
efficient classification networks. For example, the architecture proposed in [91] consists of a large
encoder and a small decoder. In addition, the bottleneck module and small convolution kernels
are frequently used to reduce the number of parameters. A more straightforward way adopted in
ShuffleSeg [26] is based on grouped convolution and channel shuffling, which are derived from
ShuffleNet. In [145], a spatial path and a context path are introduced to preserve spatial informa-
tion with a small stride and obtain sufficient receptive field with a fast downsampling strategy. In
addition, a lightweight network based on Xception is used as the backbone.
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Table 1. Top-5 Errors on ImageNet 2012 Validation Set

Model Top-1 error Top-5 error Year

AlexNet [56] 42.8 19.7 2012
VGG16 [114] 28.5 9.1 2014
VGG19 [114] 24.7 7.5 2014
GoogleNet [118] 29 9.2 2014
Inception V2 [119] 23.4 - 2015
Inception V3 [119] 21.8 5.9 2015
ResNet50 [37] 24.7 7.8 2015
ResNet152 [37] 23 6.7 2015
Xception [17] 21 5.5 2016
DenseNet-264 [43] 22.15 6.12 2017
SqueezeNet [44] 42.5 19.7 2017
MobileNet [40] 29.4 10.5 2017
ShuffleNet [149] 29.1 10.2 2017
CondenseNet [42] 26.2 8.3 2017

All values are reported as percentage (%).

3.4.7 GAN. It is also worth noting another interesting branch [92, 155] based on the recent
GAN framework, where segmentation is modeled in an adversarial learning manner. A convolu-
tional segmentation network (generator) is trained along with an adversarial network that dis-
criminates segmentation maps coming either from the ground truth or from the generator. In this
way, the adversarial loss penalizes higher-order inconsistencies between ground truth segmenta-
tion maps and the ones produced by the generator. By the end of training, the generated masks
are indistinguishable from ground-truth masks.

3.4.8 Weak Supervision. As most semantic segmentation methods rely heavily on the pixel-
level annotations that require expensive labeling, many researchers also exploit alternative weak
supervision, such as instance-level bounding boxes [20], image-level tags [94], and cross-domain
annotations [150] for semantic segmentation. To achieve this target, techniques such as multi-
ple instance learning, EM algorithm, constrained CNN, and transfer learning are adopted in the
literature.

4 BENCHMARKS

This section reviews several popular benchmarks on multimedia analytics and state-of-the-art
advancements on their benchmarks.

4.1 Classification

Several benchmark datasets have been proposed for evaluating the performance of classification
approaches. The most popular one is ImageNet 2012 [109] which provides 1.28 million training im-
ages with annotations for 1,000 classes. It has been the standard dataset for demonstrating different
methods. Performance is reported by using the top-N error rate, which indicates the percentage
of misclassified testing samples. A given image is misclassified when any of its top-N highest-
confidence output labels cannot match its ground-truth class. In Table 1, we summarize the top-1
errors reported in the literature. We can see that the performance has been improved significantly
using deeper and more complex networks. On the other hand, increasing attention is paid to the
design of efficient networks while keeping an acceptable classification accuracy (e.g., MobileNet,
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Table 2. VOC2007 Test Detection Results

Model Training data mAP Year

R-CNN [28] 07 66 2013
SPPNet [36] 07 68.1 2014
Fast R-CNN [27] 07 66.9 2015
Fast R-CNN [27] 07+12 70 2015
Faster R-CNN [104] 07 69.9 2017
Faster R-CNN [104] 07+12 73.2 2017
SSD300 [73] 07 68 2015
SSD300 [73] 07+12 74.3 2015
YOLO [101] 07+12 63.4 2015
YOLOv2 [102] 07+12 73.4 2017
DSOD300 [112] 07+12 76.3 2017

All values are reported as percentage (%).

ShuffleNet). In addition, some efficient versions of classical networks are proposed by using the
basic components (depth-wise convolution) of the compact networks. Actually, compact networks
have been proven to be effective and efficient in many applications, where the number of categories
are much less than 1,000, as in the ImageNet benchmark.

4.2 Detection

The most popular benchmarks for object detection are VOC2007 [24], VOC2012 [24], and
COCO [71], each of which includes bunches of images for several object categories. In VOC2007,
all of the annotations for 20 objects of the training, validation, and testing sets are released. We
have observed much more complete performance evaluations on this dataset. Thus, we will sum-
marize only the results on the VOC2007 testing set by using different training data from VOC2007
or VOC2012 as reported in the literature. The conclusion is similar across VOC2012 and COCO
datasets. Table 2 lists the mAP of different approaches averaged over 20 objects. We can see that
the Faster R-CNN performs best among the two-stage architectures. SSD and YOLO achieve sim-
ilar performances. As the performance of object detection is affected by several factors, such as
backbone networks and input size, suitable design of one-stage architecture would have compara-
ble performance with the complicated two-stage networks. However, as reported in much of the
literature, one-stage approaches exhibit a bit lower mAP on small objects.

4.3 Captioning

A number of datasets have been built specifically to support the research on image/video caption-
ing. Each benchmark contains pairs of an image/video and its corresponding sentences annotated
by humans. This section summarizes several widely adopted image/video captioning benchmarks
and the corresponding evaluation metrics, followed by the quantitative results of some represen-
tative methods.

Datasets. COCO [71] is the most popular benchmark for image captioning, which contains
82,783 training images and 40,504 validation images. There are 5 human-annotated descriptions
per image. As the annotations of the official testing set are not publicly available, most existing
methods follow the widely used settings in [105, 141] and take 113,287 images for training, 5K for
validation and 5K for testing. Moreover, all the descriptions in training set are commonly converted
to lowercase and some rare words that occur less than 5 times are discarded, resulting in a final
vocabulary with 10,201 unique words in the COCO dataset.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 1s, Article 2. Publication date: January 2019.



2:16 W. Zhang et al.

Microsoft Research Video Description Corpus (MSVD) [10] is a widely used video cap-
tioning benchmark that contains 1,970 YouTube snippets collected on Amazon Mechanical Turk
(AMT) by requesting workers to pick short clips depicting a single activity. The video clips are then
labeled with single-sentence descriptions by annotators. The original corpus has multilingual de-
scriptions and only the English descriptions are commonly exploited on video captioning tasks.
There are roughly 40 available English descriptions per video and the standard split of MSVD is
1,200 videos for training, 100 for validation and 670 for testing, as suggested in [32].

MSR Video to Text (MSR-VTT) [131] is a recent large-scale benchmark for video caption-
ing tasks, which contains 10K Web video clips of 41.2 hours, covering the most comprehensive
20 categories obtained from a commercial video search engine, e.g., music, people, gaming, sports,
and TV shows. Each clip is annotated with about 20 natural sentences by AMT workers. The train-
ing/validation/test split is provided by the authors with 6,513 clips for training, 2,990 for validation,
and 497 for testing.

Evaluation Metrics. Five types of metrics are commonly used for quantitatively evaluating the
results of image/video captioning: BLEU@N [90], METEOR [7], ROUGE-L [66], CIDEr-D [122],
and SPICE [1]. BLEU@N is a popular machine translation metric that measures the fraction of N-
gram (up to 4-gram) that are in common between a hypothesis and a reference or set of references.
However, as pointed out in [16], the N-gram matches for a high N (e.g., 4) rarely occur at a sentence
level, resulting in poor performance of BLEU@N , especially when comparing individual sentences.
Hence, another more effective evaluation metric, METEOR, is used along with BLEU@N , which
is also widely used in the natural-language processing (NLP) community. In contrast to BLEU@N ,
METEOR computes unigram precision and recall, extending exact word matches to include simi-
lar words based on WordNet synonyms and stemmed tokens. ROUGE-L computes an F-measure
with a recall bias using the longest common subsequence between the result sentence and each
reference sentence. Another important metric for image/video captioning is CIDEr, which mea-
sures consensus in image/video captioning by performing a Term Frequency Inverse Document
Frequency (TF-IDF) weighting for each N-gram. The above four kinds of evaluation metrics (i.e.,
BLEU@N , METEOR, ROUGE-L and CIDEr-D) are primarily sensitive to N-gram overlap, which is
neither necessary nor sufficient for two sentences to convey the same meaning. Therefore, a novel
evaluation metric, SPICE, was recently devised to measure how effectively captions recover ob-
jects, attributes, and the relations between them over scene graphs, which better simulates human
judgment. All metrics can be computed by leveraging the codes3 released by the COCO Evaluation
Server [16].

Quantitative Results of Representative Methods. Most popular methods of image/video
captioning have been evaluated on COCO [71], MSVD [10], and MSR-VTT [131]. We summarize
the results on these three datasets in Tables 3, 4, and 5. As can be seen, most of the works are very
recent, indicating that image/video captioning is an emerging and fast-developing research topic.

4.4 Semantic Segmentation

This section reviews the standard benchmarks of semantic segmentation.

Evaluation Metric. To assess semantic segmentation, mean Intersection-over-Union (mIoU)
[24] has been widely adopted in the literature: IoU=TP/(TP+FP+FN), where TP, FP, and FN are
true positives, false positives and false negatives, respectively.

Dataset. The most important dataset for semantic segmentation is Pascal VOC2012 [24]. The
performances of almost all of the methods are reported on Pascal VOC2012 for fair comparison.

3https://github.com/tylin/coco-caption.
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Table 3. Reported Results on COCO Dataset, where B@N , M, R, C and S are Short for BLEU@N ,

METEOR, ROUGE-L, CIDEr-D and SPICE Scores

Cross-Entropy Loss CIDEr Optimization

B@1 B@4 M R C S B@1 B@4 M R C S

NIC (G) [126] 66.6 20.3 - - - - - - - - - -
LRCN (G) [23] 69.7 27.8 22.9 50.8 83.7 15.8 - - - - - -
HA (V) [132] 71.8 25.0 23.0 - - - - - - - - -
SA (V) [132] 70.7 24.3 23.9 - - - - - - - - -
ReviewNet (V) [135] - 29.0 23.7 - 88.6 - - - - - - -
ATT (G) [144] 70.9 30.4 24.3 - - - - - - - - -
SC (V) [153] 71.6 30.1 24.7 - 97.0 - - - - - - -
LSTM-A3 (G) [141] 73.5 32.4 25.5 53.9 99.8 18.5 - - - - - -
LSTM-A5 (G) [141] 73.4 32.6 25.4 54.0 100.2 18.6 - - - - - -
Adaptive (R)[75] 74.2 33.2 26.6 - 108.5 - - - - - - -
FC-2K (R) [105] - 29.6 25.2 52.6 94.0 - - 31.9 25.5 54.3 106.3 -
Att2all (R) [105] - 30.0 25.9 53.4 99.4 - - 34.2 26.7 55.7 114.0 -
Up-Down (R) [2] 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4
GCN-LSTM (R) [140] 77.4 37.1 28.1 57.2 117.1 21.1 80.9 38.3 28.6 58.5 128.7 22.1

The short name in the brackets indicates the image features, where V, G and R denotes VGG, GoogleNet and ResNet
feature, respectively. All values are reported as percentage (%).

Table 4. Reported Results on MSVD Dataset, where B@N , M and C are

Short for BLEU@N , METEOR and CIDEr-D Scores

Model B@1 B@2 B@3 B@4 M C

LSTM (A) [124] - - - 31.2 26.9 -
TA (G+M) [136] 80.0 64.7 52.6 41.9 29.6 51.7
S2VT (V+O) [123] - - - - 29.8 -
LSTM-E (V+C) [85] 78.8 66.0 55.4 45.3 31.0 -
GRU-RCN (G) [6] - - - 43.3 31.6 68.0
h-RNN (V+C) [147] 81.5 70.4 60.4 49.9 32.6 65.8
BAE (R+C) [8] - - - 42.5 32.4 63.5
AF (V+C) [39] - - - 52.4 32.0 68.8
LSTM-TSA (V+C) [88] 82.8 72.0 62.8 52.8 33.5 74.0

The short name in the brackets indicates the video features, where A, V, G, C, O, R
and M denotes AlexNet, VGG, GoogleNet, C3D, optical flow, ResNet and motion feature
learnt by 3D CNN on hand-crafted descriptors, respectively. All values are reported as
percentage (%).

Other popular datasets include MSCOCO [71] and Cityscapes [19]. In this survey, we focus on
Pascal VOC2012 to evaluate a wide range of methods.

Pascal VOC2012 [24] contains 21 classes in total: 20 foreground object classes and one back-
ground class. The dataset contains 1,464 (train), 1,449 (val), and 1,456 (test) pixel-level labeled
images for training, validation, and testing, respectively. Cityscapes [19] mainly focuses on the
street scene in 50 cities in different conditions, which includes 30 classes of annotation. Classes
that are too rare are excluded, leaving 19 classes for evaluation. COCO [71] contains photos of
91 objects types frequently appeared in daily life. A total number of 2.5 million labeled instances
in 328k images are included.
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Table 5. Reported Results on MSR-VTT Dataset, Where

B@N , M, C and R are Short for BLEU@N , METEOR,

CIDEr-D and ROUGE-L Scores

Model B@4 M C R

LSTM (G) [124] 33.5 24.2 34.1 54.1
LSTM (C) [124] 33.7 24.4 34.6 54.7
LSTM (G+C) [124] 34.1 24.8 35.5 55.8
LSTM (G+C+A) [124] 35.7 25.6 38.1 58.2
TA (G+C+A) [136] 34.8 25.1 36.7 57.1
LSTM-E (G+C+A) [85] 36.1 25.8 38.5 58.6
S2VT (G+C+A) [123] 36.0 26.0 39.1 58.4
AF (V+C) [39] 39.4 25.7 40.4 -
AF (V+C+A) [39] 39.7 25.5 40.0 -

The short name in the brackets indicates the video features, where
V, G, C and A denotes VGG, GoogleNet, C3D and Audio feature,
respectively. All values are reported as percentage (%).

Table 6. Reported Results on Pascal

VOC2012 Dataset

Model mIoU Year

FCN [74] 62.2 2014
SegNet [4] 59.9 2015
Deeplabv1 [12] 71.6 2015
Dilated Conv [146] 75.3 2015
Deeplabv2 [13] 79.7 2016
RefineNet [67] 84.2 2016
PSPNet [151] 85.4 2016
GCN [93] 83.6 2017
Deeplabv3 [14] 86.9 2017
Deeplabv3+ [15] 89 2018

All values are reported in percentage (%).

Quantitative Results. Since almost all popular methods report their results on Pascal VOC2012
[24], we summarize the performances based on Pascal VOC2012. Please note that the official web-
site also hosts a leaderboard4 for comparison. Here, we briefly summarize several representative
methods in Table 6 in chronological order. As shown, semantic segmentation has been prospective
since 2014, and state-of-the-art performance has also been significantly improved to 89%. Notably,
FCN serves as the milestone for subsequent methods, despite the primitive performance in 2014.
The DeepLab family is active and performs strong in the timeline.

Several insights can be observed for decent performance by reviewing existing works. First,
dilated convolution for large FoV is required, while keeping spatial information. Second, pyramid
pooling for multi-level feature representations is essential. Third, skip connection can be adopted
for feature fusion. Fourth, encoder-decoder networks can be explored for better incorporating
context.

4http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6.
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5 DISCUSSION AND OPEN ISSUE

In this survey, we have reviewed deep-learning techniques on four key topics related to multimedia
analytics, including classification, detection, captioning, and segmentation. We present recent ad-
vances, showcase innovative methodologies and ideas, evaluate the state-of-the-art, and introduce
popular benchmarks and challenges for these tasks. Though extensive efforts have been made on
multimedia analytics with deep learning, we believe that we are still in the early stage of unleash-
ing the power of deep learning in the era of big data. Given the substantial amounts of multimedia
data generated every day, how to devise effective deep-learning models to facilitate multimedia
content understanding remains an open problem. We hope that this survey will shed light on the
nuts and bolts of multimedia analytics for both current and new researchers.

In addition, we pose several possible future research directions for each task. First, learning a
class of deep nets in the generative model view will be a promising way to further boost recogni-
tion. Previous works focus more on general image classification. Leveraging efficient and compact
networks in a more applicable way where candidate categories are much less than 1,000 is still
not well studied. Furthermore, how to automatically search an effective network structure given
a learning task is also an interesting topic. Second, the extensions of region-based methods or the
exploration of recurrent neural networks in detection should be helpful for detecting and tracking
objects simultaneously. Third, to reduce the high cost of collecting expert labeled data with pixel-
level annotations for segmentation, an alternative way is to use synthetic data, which is largely
available from computer games, and the ground truth could be freely generated automatically. One
major obstacle in object detection and segmentation is the lack of accurate labeled training data. As
we have observed large amounts of image-level annotations, using these weakly labeled training
data to facilitate the object-level vision tasks will be a promising method. Finally, how to generate
free-form sentences and support open vocabulary is vital to captioning in practical scenarios.
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