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Detecting and Extracting the Photo Composites Using
Planar Homography and Graph Cut

Wei Zhang, Xiaochun Cao, Yanling Qu, Yuexian Hou, Handong Zhao, and Chenyang Zhang

Abstract—With the advancement of photo and video editing
tools, it has become fairly easy to tamper with photos and videos.
One common way is to insert visually plausible composites into
target images and videos. In this paper, we propose an automatic
fake region detection method based on the planar homography
constraint, and an automatic extraction method using graph cut
with online feature/parameter selection. Two steps are taken in
our method: 1) the targeting step, and 2) the segmentation step.
First, the fake region is located roughly by enforcing the planar
homography constraint. Second, the fake object is segmented
via graph cut with the initialization given by the targeting step.
To achieve an automatic segmentation, the optimal features and
parameters for graph cut are dynamically selected via the pro-
posed online feature/parameter selection. Performance of this
method is evaluated on both semisimulated and real images. Our
method works efficiently on images as long as there are regions
satisfying the planar homography constraint, including image
pairs captured by the approximately cocentered cameras, image
pairs photographing planar or distant scenes, and a single image
with duplications.

Index Terms—Graph cut, online feature/parameter selection,
photo composites, planar homography.

I. INTRODUCTION

T HERE is a phenomenon rising in the past decades: people
are fond of tampering with photos and videos. With the

popularity of the networks and multimedia, there is a growing
number of tampered photos and videos flooding televisions,
magazines, and networks, which hide the truth. At the same
time, with powerful image and video editing tools, it is be-
coming easy to tamper with images and videos. Evaluating the
authentication has turned out to be an important task today.

In the past few years, both active and passive methods have
been developed for image forensics. Digital watermarking
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[1], [2] is known as a popular active technique. However, it is
applicable mainly in a controlled environment since it requires
cooperation from the image taker to insert a watermark at
the recording time. Passive methods are the newly developed
techniques and have wider usage since they require nothing
from the image taker. Generally, previous passive techniques
can be roughly grouped into five categories [3]: 1) pixel-based
techniques; 2) format-based techniques; 3) camera-based tech-
niques; 4) physically-based techniques; and 5) geometric-based
techniques. To be detailed, various cues in different perspec-
tives have been used as evidence in finding the fake region from
images. Copy-move detection [4] and duplication detection [5]
are those pixel-based examples. JPEG quantization [6], double
JPEG [7], and JPEG ghost [8] are the format-based ones.
Camera responses [9] and sensor noises [10], [11] are those
camera-based ones. Lighting conditions [12] and shadow matte
consistency [13] are examples of physically-based techniques.
Estimating the principle point [14] and skew parameter [15]
belongs to the geometric methods.

Methods using inconsistency to detect forgery serve a big
branch of the above five categories. Many previous works have
been done by the pioneering groups, e.g., Wu [16]–[18], Fridrich
[10], [11], [19], and Farid [14], [15], [20]. Swaminathan et al.
detect the forensics using inconsistency in CFA interpolation
features [16], [18], and inconsistency in coefficients of the linear
components [17]. Chen et al. [10] and Fridrich [11] detect the
forensics by evaluating the inconsistency in sensor noise. Lin
et al. [9] evaluate the images with inconsistency on camera re-
sponse. Johnson and Farid [14] detect composites of people
using the inconsistency of the principle points estimated from
human eyes. Wang and Farid [15] detect photo/video repro-
jections by judging the inconsistency in the skew parameter.
Johnson and Farid [20] reveal the inconsistency by rectifying
regions, which requires known world geometry (polygons or cir-
cles) existing in the scene.

Our method is a new inconsistency-based method which uses
the inconsistency within the planar homography, and extracts
them using the graph cut. As shown in Fig. 1, the real world
appears differently through different camera setups, and the in-
consistencies between different images are usually un-notice-
able for human eyes due to the distortions in shapes and po-
sitions. Fortunately, these distortions follow certain laws. That
is, appearances and positions of rigid objects in one image are
related with another image monitoring the same scene. Theoret-
ically, our method works as long as there are objects satisfying
the planar homography. There are cases when duplication ap-
pears within a single image, e.g., copying and pasting a region
to a different position (Fig. 1, the last row). There are also cases
when two or more images are capturing the same scene but with
different setups (e.g., the visual surveillance sites, famous places
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Fig. 1. It is difficult even for humans to judge the authenticity or to locate the
photo composites in visually plausible images. The dashed rectangles, which
indicate the fake regions, are generated with our proposed method.

photographed by various tourists across the year). In this work,
we rectify/align the images using the planar homography and
then extract the fake region using the graph cut.

The common weaknesses of the existing methods are the
absence of automatization and segmentation. Usually, sus-
pected regions are selected by humans, i.e., the detection must
be under human supervision, and thus lacks automatization.
Another weakness is the lack of segmentation for the faked
object. Farid mentioned in [8] that segmentation is a necessary
step for automatically and efficiently analyzing large amounts
of images. For most existing techniques, a rough bounding box
containing the fake object is the final output. In this work, this
weakness is tackled with graph-cut-based segmentation tech-
niques. The traditional graph cut [21] is not directly applicable
when picking up fake regions from a large amount of images
since it requires human interaction (specifying the source/sink
values, adding hard constraints, choosing features/parameters,
etc.). Automatic graph cut is challenging since the optimal
features and parameters are highly picture-dependent. Peng and
Veksler [22] introduce an automatic parameter training method
via AdaBoost. However, this method requires a large image
database and long training time, and also involves user interac-
tion. In this work, we make use of the online feature/parameter
selection, which was originally utilized in object tracking
[23], to extract fake regions automatically. Partial results were
presented in [24].

The main steps of our method are illustrated in Fig. 2. We
use a pair of distant scenes as the example. Later in this paper,
we extend the method to the single image case. In general, our
method takes two steps. One is the targeting step which locates
the location of the fake region roughly using the planar homog-
raphy constraint. The other step is the segmentation which ex-
tracts the fake object more precisely.

In summary, our method has the following advantages com-
pared with previous ones:

1) The planar homography constraint is introduced for the
fake region detection as a geometrical method.

2) Rather than the rough location, precise boundaries of the
fake object are extracted.

3) The online feature/parameter selection framework is
adopted to improve the performance and automatization
of the segmentation process.

Fig. 2. Overview of our method. Steps are shown on the right and examples
are on the left.

II. FAKE REGION TARGETING

As we know from multiple view geometry [25], there is a
planar homography relating the projected images, when
these images are captured by cocentered cameras or the scenes
are coplanar. We denote this with: , where and
are the corresponding points on the two images. This con-
straint defines a one-to-one mapping of pixel locations between
two photos. In this section, we get a rough estimation of the fake
regions by enforcing this constraint.

The matrix has the degrees of freedom (DOF) of 8, and
each pair of the matching points gives 2 DOF, so at least 4 pairs
are required to calculate using direct linear transformation
(DLT) [25]. However, this linear algorithm is vulnerable to er-
rors. Usually more pairs are used for a robust estimation. In this
work, SIFT [26] is used to find initial matching points, and an
automatic purification step is introduced before calculation
since there are outliers. Alternatively, Wang and Farid [15] use
the Harris detector to locate interest points and use standard op-
tical flow to track them. This method is not applicable since
the optical flow is not always computable in our case due to
the large displacements. In addition, the wrong matches are re-
moved manually in [15], which limits its use as an automatic
detection. Compared with [15], our purification can be done au-
tomatically and effectively.

A. Purification of Matching Pairs

Theoretically, with authentic images and perfect matching
points between them, can be calculated correctly. However,
there are mainly two categories of wrong matches.

1) The first kind of wrong matches are from the false matches
by SIFT. SIFT may not work very well with wide base-
line or large rotation angle [27]. Estimation with wrong
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matches leads to a wrong of course. RANSAC is known
as a robust estimation method towards the samples with
outliers and suits our case well. In this work, we adopt
RANSAC to remove wrong matches caused by SIFT.

2) The second category denotes the “wrong” matches within
the fake region. Note that these “wrong” matches are not
caused by SIFT but the fake region in the images. We can
not avoid this error, but we can minimize the impact. When
two pictures with complex fake regions are to be examined,
SIFT might return dense matching points mainly from the
fake region. If all of the matches are used to estimate , the
confusion between the original region and the fake region
is likely to occur. That is, we may regard the fake region
as authenticated, while the original region as faked, since
the majority of the points used to estimate are from the
fake region. In this work, the Bucketing technique [28] is
introduced to avoid the unreasonable confusion.

The Bucketing technique is to make global spatial optimiza-
tion on selecting matching points. Images are divided into

square buckets; then all the feature points fall into one of
the buckets. Buckets with at least one feature point are indexed
for later selection. We select correspondences based on the fol-
lowing policies: 1) selection takes place at only the buckets with
at least one feature point; 2) one point is allowed from each
bucket at most; 3) each bucket votes its point randomly if it has
many. After bucketing, the hit ratio for authentic points can be
increased sharply.

B. Calculating

Estimation of the planar homography matrix is critical
to our detection. After the two-step purification, corresponding
points are prepared, and next comes the calculation.

DLT is linear and needs only 4 pairs of corresponding points
to calculate the planar homography matrix, but vulnerability is
the price it pays. Instead, the Gold Standard Rule [25] is adopted
in over-determined cases (more than 4 matching pairs are avail-
able to estimate ). The general idea of this method is to mini-
mize the geometric error, and thus finds the best parameter of a
certain model. More details on how to calculate can be found
in [25].

C. Targeting Fake Regions Roughly via Constraint

Now that we have the matrix, we first recover the rec-
tified image (Fig. 3(b) upper) from the original image
(Fig. 3(a) upper) using , since it defines a one-to-one pixel
location mapping between the two pictures. Here, inverse map-
ping and bilinear interpolation are used to get a smooth warped
image. After this mapping, common areas of and should
be the same. Direct subtraction is used to produce the differ-
ence map as the metric determining the fake region. Reasons on
choosing direct subtraction rather than correlation are based on
the following considerations. 1) Correlation magnifies small un-
desired mismatches between warped images, which are usually
borders of objects. Fig. 3 shows good agreement with this ar-
gument. 2) Correlation is more computationally expensive than
the adopted difference based on pixel subtraction.

Intuitively, before the subtraction operation, common areas of
the two rectified photos should be normalized to handle illumi-
nation changes. That is, sums of intensities of the two common

Fig. 3. Comparison between direct subtraction and correlation. (a) The original
fake image pair. (b) The rectified image pair. (c) The difference maps using
correlation (upper) and direct subtraction (lower). (d) The targeting results using
correlation (upper) and direct subtraction (lower).

areas are enforced to be equal. With such normalization, our
method is immune to the global illumination changes.

Practically, there are much more complex illumination cases
(Fig. 5), which suffer nonlinear transformations. Removing
such transformations are difficult since we have little informa-
tion on the nonlinear model. However, in most cases, nonlinear
transformations can be approximately treated as linear ones
for small picture size (in the extreme case, 1 1 images can
always be treated as linear transformations). Therefore, in
this work, we normalize the common areas of the two images
piecewisely. The whole image is divided into parts, which
are normalized separately. Thus to some extend, our method
is robust against complex illumination changes. Fig. 4 shows
some results against nonlinear transformations (histogram
equalization and gamma correction). With the piecewise nor-
malization [Fig. 4(d)], the pollution is reduced greatly. Fig. 5
shows some real images with unknown transformations. It also
works well as expected. Note that the blocking effects in the
fake region are the side effects (zoom in Fig. 5(d) for a better
view). However, this result has already been good enough for
the targeting step. The exact boundaries are extracted later in
the segmentation step.

The difference map is further thresholded to a binary map,
and the threshold is given by , where denotes
the difference of frame and in common region, and the
constant value usually locates in [0.3, 0.7]. In this work, 0.5
is used through our experiments. Note there are always some
tiny and discrete false positives which are wrongly marked as
fake regions after filtering, especially along the edges of objects
(Fig. 3(d) lower). That is because the corresponding matches
cannot be fully purified. Statistically, these mismatches are
prone to be heavily clustered in the fake region, while in those
authentic regions, mismatches are usually distributed sparsely.
So areas with dense high are targeted as the fake region.

III. FAKE REGION SEGMENTATION

In this section, the fake objects are extracted via graph cut
[29]. Let us refer to Fig. 2 and assume that the binary map for
the rough fake region location has already been obtained in the
targeting step. Then a subpicture [Fig. 2(c2)] around the center
of the rough fake region is cropped for latter segmentation. Ac-
tually in this work, we get the subpicture using the following
policy: 1) locate the mean center of the mismatches on
the binary map obtained in Section II; 2) starting from ,
expand a square with a minimum side length , which covers
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Fig. 4. Performance against nonlinear illumination changes. (a) The original
images. (b) The images after nonlinear transformations. The first two rows un-
dergo histogram equalization, while the last two rows suffer gamma correction.
(c) The subtraction results without piecewise normalization. (d) The subtraction
results with piecewise normalization.

Fig. 5. Performance against complex illumination changes. (a), (b) The orig-
inal fake image pair. (c) Targeting results using global normalization. (d) Tar-
geting results using piecewise normalization.

80% of all mismatching points; 3) further extend the square with
a margin .

To achieve an automatic cutting, we introduce the online se-
lection framework for different features and parameters. As we
know, different cues usually hold different powers separating
a desired object from its surrounding. Online selection is to
choose a set of features/parameters automatically which max-
imizes the quality function

(1)

where is the parameter vector; is the parameter space for
; and is the quality function that gives higher score to

better result.
In this section, we will start by reviewing the graph cut briefly,

and then focus on the online feature/parameter selection frame-
work which improves the graph cut.

Fig. 6. Online feature selection during graph cut. (a) The graph constructed
given an image �. (b) The graph cut result without online feature selection. The
standard gray ������� ������ ��		
� is used as the feature for computing
the data and smoothness terms in (3) and (4). (c) The graph cut result with on-
line feature selection. The online selected feature ��� � �� � 	
� enhances
the differences between the foreground and background. Note that for better il-
lustration, only half of the data links are shown in (b) and (c). (d) The legend
for this figure.

A. Graph Cut

Graph cut [29] is a well-known effective segmentation
method, which formulates the cutting problem into the energy
minimization problem, solved by the maximum-flow/min-
imum-cut theory.

Given an image with some fake region inside, a graph
is constructed as shown in Fig. 6(a). is the set of nodes

corresponding to the pixels in , and an edge connects
every pair of four-neighboring pixels. Note that also contains
two extra nodes called the source and the sink , which are
the labels for the foreground (the fake region) and background,
respectively. Every other node in has two edges connecting
to and . Each edge has a corresponding cost

, which indicates the dissimilarity of the two nodes. Var-
ious functions can be used measuring the cost for a given edge

, such as the ad-hoc function [30]
, where is the factor of “camera noise,”

or alternatively [31] . Thus, the
segmentation problem is formulated as a maximum-flow/min-
imum-cut problem in graph .

Let be a labeling of an image; the energy function is for-
mulated as [29]

(2)

where is the set of all pixels in , is the set of all pairs
of four-neighboring pixels, denotes the label for the pixel
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, is the data term, and is the smooth-
ness term. Generally, indicates individual label-prefer-
ences of pixels based on observed intensities and prespecified
likelihood function, while encourages spatial coherence
by penalizing discontinuities between neighboring pixels [29].
That is, the data term tends to segment an image into small sharp
pieces, while the smoothness term tends to segment an image
into bigger blocks with gentle boundaries. The relative weight
between them controls the tradeoff, which is highly picture-de-
pendent for a pleasing segmentation. In this work, the data term
and smoothness term are defined as

(3)

(4)

where and are constants, and , , and are the colors
of , , and , respectively. In our implementation, the
constants were set as , and .

B. Online Feature Selection for Graph Cut

Different from the interactive graph cut, performance of the
automatic segmentation depends mainly on the distinction of the
foreground and background. Let be the dimen-
sional feature image extracted from original image and binary
map

(5)

where the function could be any mapping such as color chan-
nels, saliency, texture scores, etc., each of which holds different
separating power. In this work, we use the color channels as the
seeds to extract the feature image, since the linear combination
has a relative low computation cost and holds good separating
power

(6)

Note that there are only 49 distinctive features left, rather
than , after pruning those linearly dependent combinations.
This set of candidate features is chosen because [23]: 1) the fea-
tures are efficient to compute (only integer arithmetic); 2) the
features approximately uniformly sample the set of 1-D sub-
spaces of 3-D RGB space; and 3) some common features from
the literature are covered in the candidate space, such as raw
R, G, and B values, intensity R G B, approximate chromi-
nance features such as R-B, and so-called excess color fea-
tures such as 2G-R-B. In this work, we adopt a coarse-to-fine
search procedure to refine the feature selection. First, the best

with maximal separating power is selected
coarsely among the 49 discrete positions (the interval is 1). Next
we search a better near in the parameter space with a
smaller interval. Then, normalization is taken to map always
onto [0, 255]

(7)

where denotes the negative entries among .
For example, if , then . Intuitively,

maps onto unsigned integers, and the
division by maps linearly onto [0, 255].

Note our method also requires specifying the initial fore-
ground area to run automatically, but that does not mean our
method requires human interaction. The initial foreground is de-
fined by the level set [32], [33] automatically on the difference
map obtained in Section II. The level set is an effective contour
finding method which addresses the problem (2-D) in a higher
dimension (3-D). That is, the contour can be regarded as the in-
tersection of a 3-D shape and a 2-D hyperplane (that is, a closed
2-D curve with the same level). In our implementation, the ini-
tial contour is defined as a rectangle, which has the same size as
the image, on the difference map generated after the subtraction.
The contour shrinks at each iteration, and finally to be a closed
curve containing the mismatches after several iterations.

Although the difference map may indicate two contours and
each is incomplete (Fig. 3(d), lower), it is good enough for an
initial guess for the foreground since the high recall rate is guar-
anteed. Naturally, the background is defined by an outer rec-
tangle, which extends pixels from the inner
foreground bounding box, with and denoting the width and
height of the inner bounding box for foreground.

Next we turn to construct the quality function which scores
a certain feature. As long as the foreground and background
are defined, the discrete probability distributions for fore-
ground and for background can be obtained. Further, a log
likelihood of is computed as

(8)

where is a small positive number to avoid zeros at both the nu-
merator and denominator. Then the variance ratio (VR) is for-
mulated as

(9)

where is the variance of with respect to a probability
distribution

(10)

VR indicates the degree of separation, since large VR indicates
that colors in the foreground and background are tightly clus-
tered (low intraclass variance), and the differences between
foreground and background are enlarged (high interclass vari-
ance). In Fig. 7, all 49 combinations are shown in (d) with
their VR labeled, which indicates agreement with (9). Fig. 8
shows the segmentation (graph cut) results for the top seven VR
images in Fig. 7(d), first row. With online feature selection, the
object becomes more separable during the running time. Also
in Fig. 9, there are some examples demonstrating the benefits.

Fig. 6 shows how online feature selection improves graph cut.
Graph cut without human supervision is challenging since the
shapes, colors, and perspectives vary from object to object in
the real world. It is unlikely to satisfy such variety with a fixed
standard. A foreground may cover a large range of colors (for
example: a person with a red jacket and green pants), and so
does the background. In such cases, it is unlikely to define a



ZHANG et al.: DETECTING AND EXTRACTING THE PHOTO COMPOSITES USING PLANAR HOMOGRAPHY AND GRAPH CUT 549

Fig. 7. VR indicates the degree of separation. (a) The original color image with
rough initial foreground in red dashed curve. (b) The selected feature image
with highest VR. (c) The standard gray image. (d) All feature images in 49
combinations which are listed in descending order in VR (top to bottom, left
to right). Labels below each feature image are in format: ��� � � � �. The
feature images with highest and lowest VR are marked with red rectangle and
blue dashed rectangle, respectively.

Fig. 8. Segmentation results for the feature images in Fig. 7(d) first row.

Fig. 9. Benefits from online feature selection. Row 1: Input images for graph
cut. Row 2: The graph cut results corresponding to Row 1. (a), (c), (e) Standard
gray images. (b), (d), (f) Feature images selected via online feature selection.
The weights for [R, G, B] in (6) are labeled under each image.

source/sink value which can separate them apart in the original
picture. However, online feature selection can find the best com-
bination, which holds the most power separating the desired ob-
ject from its surroundings, or at least alleviates the difficulties,
thus making the segmentation better. Note all it requires is just
a rough initial definition for the foreground [dashed black rec-
tangle in Fig. 6(a), or the red curve in Fig. 7(a)]. This definition
does not have to be precise and complete, but needs to contain
most true foreground pixels.

Fig. 10. Cutting results for the image in Fig. 9(e). The scores labeled under
each image are in the format: �� � �. The best parameter combination in (13)
is marked in red dashed rectangle.

C. Online Parameter Selection for Graph Cut

A fixed set of parameters for graph cut is difficult for the un-
certainty and variety through different images. Most of the ex-
isting automatic methods need several strokes constructing the
model of foreground and selecting parameters manually, which,
however, are all impractical in fake region detection since we
know little about the fake region before we extract it. The initial
foreground can be regarded as an alternative to the strokes, and
in this section, we introduce a parameter selection framework to
achieve automatic graph cut.

There are several parameters to be determined during graph
cut, each of which affects the final result. These parameters can
be learned during the training process in [22]. However, the
global optimal trained parameters are not optimized for each
single image; thus, it will not suit every image. In this work, we
adopt an online parameter selection framework to optimize the
parameters for each image locally since images are known to be
highly distinct from each other.

Theoretically, all parameters in graph cut can be selected
dynamically using the online parameter selection as long as
the quality function is properly defined. Considering the cor-
responding costs, however, only the most important ones are
worth a try. One of them is the weight ratio: , between the
smooth term and the data term in the energy function. The
source and sink can be determined simply using the mean
intensity of the foreground and background, respectively. is
chosen dynamically from a small range, e.g., [0, 0.1], which
is sufficient for a desirable result. The quality function which
marks scores for different results can be defined considering
both the intensity (11) and gradient information (12) [22]

(11)

(12)

where is the image after online feature selection; is the seg-
mentation result; is the set of pairs of neighboring pixels
along the object edge: or

; is the set of pairs of neighboring pixels inside
the object region, ; is the
length of the set ; and is the normalized gradient at point
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Fig. 11. Sample images in PASCAL 2008 dataset.

. For a good segmentation, should be positive and larger to
encourage high contrast borders, while a smaller is preferred
to get smooth boundaries. An index of the best result is given by

(13)

where is the rank of the th image with respect
to the feature , when sorted in mode : ascending or de-
scending . Fig. 10 shows that this method takes advantages
from both quality functions in (11) and (12).

Finally, we select the most reasonable result according to (13)
as the segmentation output. Then the final result is a fusion
of the targeting and segmentation outputs, which takes advan-
tages from both sides. Automatic segmentation is challenging
and sensitive among various images, while the targeting output
is more stable. Usually the targeting step gives better recall but
low precision [Fig. 2(c2)], while the segmentation step is to re-
fine the precision. If segmentation returns a much different re-
sult from targeting step, it is more likely that the segmentation
fails. So, in our implementation, the fusion is defined as

,
.

(14)
(14 )

(15)

where and are the outputs after targeting
and segmentation steps, respectively, and is a predefined
threshold, which is 0.4 throughout our experiments.

IV. EXPERIMENTAL RESULTS

In this section, performance of our method is evaluated on
both semisimulated and real cases.

A. Datasets

PASCAL 2008, OXFORD’s affine covariant feature images,
IG02 images, and real images with composites are used in our
experiments.

PASCAL 2008 images [34] are used to evaluate the perfor-
mance of our method with respect to different scales, rotations,
and offsets. As shown in Fig. 11, this dataset covers a large range
of natural scenes, including people/animal, indoor/outdoor, and

Fig. 12. Sample images in OXFORD dataset (From top to bottom, left to right:
GRAF, UBC, BARK, LEUVEN, TREES, BIKES, WALL, and BOAT).

trees/flowers. In our experiments, 5096 images with an average
resolution 500 300 (pixels) are used.1

OXFORD’s affine covariant feature images2 contain a set
of challenging image pairs with tough affine transformations,
which are originally used for the performance evaluation of
feature detectors/descriptors. Fig. 12 shows the sample images,
which cover blur effects, viewpoint variations, zoom, rotation,
lighting changes, and JPEG compression. All of the image
pairs satisfy the planar homography constraint approximately.
The affine transformations in this dataset are generally tough:3

1) the viewpoint changes up to 60 (GRAF, BARK, WALLS,
BOAT); 2) the scale changes by about a factor of 4 (BARK,
BOAT); 3) the lighting changes are introduced by varying the
camera aperture (LEUVEN); 4) the JPEG compression group
is generated using a standard image browser with the image
quality parameter varying from 40% to 2% (UBC); 5) the blur
group is acquired by varying the camera focus (TREES). There
are eight groups and each has five image pairs, with an average
resolution of 800 640 pixels. Note that the images are either
capturing the planar scenes or acquired by cocentered cameras,
so that the images are related by homographies. However, there
are also some regions that do not satisfy the planar homography,
e.g., the waving leaves in TREES, the driving car in GRAF, and
the walking people in BOAT. Without surprise, these moving
local regions together with the above-mentioned significant
distortions challenge the proposed method. Therefore, we use
this dataset to evaluate the performance of our method in the
worst case scenarios.

The IG024 (INRIA Annotations for Graz-02) [35], [36]
dataset is used as the source images in our experiments, as the
ground truth segmentation is available. IG02 is a popular nat-
ural-scene object category dataset. Some sample source images
are shown in Fig. 13. With the help of the provided masks,
we extract the objects to be copied as the source objects. Then

1Available: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/.
2Available: http://www.robots.ox.ac.uk/~vgg/research/affine/index.html.
3Available: http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/

DataREADME.
4Available: http://lear.inrialpes.fr/people/marszalek/data/ig02/.
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Fig. 13. Sample source images. The objects are extracted from the original
images in IG02 based on their corresponding masks.

TABLE I
PERFORMANCE ON PASCAL 2008 WITH AN OFFSET OF 10

these extracted source objects are inserted into the target image
(PASCAL 08 and OXFORD’s affine) as the faked objects.

Also in our experiments, real images with visually plausible
composites are either self-taken or are from the internet.

In our experiments, the precision and recall rates for a result
(estimated) are defined as

(16)

(17)

where is the fake region we get, is the groundtruth
fake region, and denotes the number of nonzero pixels in .
Note and are both binary images, in which the fake
region is marked as 1 and 0 for other pixels.

B. Performance With Respect to Scales, Rotations, and Offsets

We first test our method on the PASCAL 2008 image dataset.
Note that PASCAL does not have image pairs satisfying the
constraint. So we synthesize the second image from the existing
one by rotation and zooming operation. Then the source objects
are inserted into the target photos with offsets.

The average precision and recall rates with respect to different
rotation angles and zooming factors are shown in Table I. Num-
bers in precision/recall columns are in the following format:
(mean result with fixed feature&parameter)/(mean result with
online feature&parameter selection), in short (fixedResult/on-
lineResult). Columns 4 and 5 are the improvement ratios in
precision and recall, respectively, which are calculated as: (on-
lineResult-fixedResult)/fixedResult. Note the rotation angle
here is equally divided into three parts: pitch , roll ,
and yaw , and the offset is fixed at 10 pixels. Table II
shows the detailed distribution of the performance. As shown,
the precision and recall are generally decreasing when rota-
tion/zooming grows. This is due to the limitation of the current
state of the art feature descriptors in the case of wide baseline

TABLE II
DISTRIBUTION OF THE PERFORMANCE IN Table I

Fig. 14. Images used to test the user’s ability to position an object correctly.
The users are asked to insert the provided car [the car in (a)] into (b)–(d) ac-
cording to (a). (a) An image (resolution: 1000� 700) with a car inserted. (b)–(d)
Real images (resolution: 880� 680) having a certain homography relationship
with (a) (without the inserted car). Images used in this experiment and their
ground truth homographies are available in http://www.robots.ox.ac.uk/~vgg/
research/affine/index.html.2

as also argued in [27]. The overall average precision and recall
rates are 66.92% and 79.94%, respectively.

To evaluate the performance against different offsets, we first
test the ability of typical users to position objects in an image
pair from a simple user study. In this study, an image [Fig. 14(a)]
with an inserted car is shown to 10 normal users (undergraduate
students majored in computer science). These users were told
to position and morph the same car into the distorted images
[Fig. 14(b)–(d)] so that it looks as visually plausible as possible.
In this experiment, all users achieve this task by using some
photo editing software, i.e., Photoshop in our experiment. To
evade detection of the algorithm proposed in the paper, an ex-
perienced attacker might be able to generate the tampered image
pair by estimating the planar homography first and then insert
the transformed object at exactly the same location. During this
experiment, however, none of these users estimates the planar
homography or is able to calculate the exact shape and position
using cues. This observation partially reflects the fact that very
few people have the knowledge of multiple view geometry, and
the proposed method is applicable to authenticating duplications
generated by general users.

After the users return their tampered photos to us, based on
the ground truth transformation matrices from
Fig. 14(a) to Fig. 14(b)–(d), we compute the average offset in
the - and -directions between the red cross in Fig. 14(a)
and the back-projected location from Fig. 14(b)–(d)’s
red cross location . The statistics of these offsets are shown
in Table III. Without surprise, it is harder to correctly position
objects in an image pair with more distortions.

Next, performance with respect to different offsets is tested
on the PASCAL 2008 dataset, as shown in Fig. 15. Based on
the simple user study, the offset tested in this experiment is
in the range of [0, 30] pixels, since the average resolution in
PASCAL is 500 350. Note the the fake objects are inserted in
ground truth shapes throughout our semisimulations. So when
the offset equals 0, our method cannot find the fake region
since the fake objects fully overlap with the same authenticate
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TABLE III
OFFSET DISTRIBUTION (IN PIXELS) FROM TEN REAL USERS TO POSITION THE

CAR IN Fig. 14(a) INTO Fig. 14(b)–(d)

Fig. 15. Performance of our method against different offsets in pixels.

regions. Without surprise, online selection results are mostly
better than those without online selection. Average precision
and recall reach 71.36% and 83.59%, respectively.

C. Performance With Respect to Tough Image Pairs

Then we test our method on OXFORD’s affine covariant fea-
ture images. We generate the fake image pair as follows: 1) ob-
tain the target image pair , and the groundtruth from
the OXFORD database directly; 2) randomly select a source
image from IG02, and insert into at a random position

; 3) generate with , and then insert
into B at the position , where is

the offset between the inserted position and the groundtruth po-
sition. Finally, we get a pair of images, in which the fake region
is inserted with offset away from the groundtruth posi-
tion, but with groundtruth shapes.

In total, we have 40 pairs of target photos with known
groundtruth and 117 fake patches. So we generate 40 117
pairs of fake images. Note that during this test, groundtruth
is blind to our method, and it is only used for generating fake
images. The matrix used during our detection is calculated
using the method described in the targeting step. So the only
input is the synthesized fake image pair.

Table IV shows the statistics on the OXFORD dataset with
a 10-pixel offset, while Table V shows the distribution of the
performance. Globally, all target image pairs used in this ex-
periment satisfy the constraint. However, some groups con-
tain moving objects (the driving car in GRAF, walking people
in BOAT, and waving leaves in TREES), which do not satisfy

TABLE IV
PERFORMANCE ON OXFORD DATASET WITH THE OFFSET OF 10. DATA IN

THIS TABLE ARE IN FORMAT: fixedResult/onlineResul�. FIXED RESULTS

ARE GENERATED WITH THE CONSTANT FEATURE (GRAY) AND CONSTANT

PARAMETER (� � ����: THE MEAN VALUE OF OUR � SPACE)

TABLE V
DISTRIBUTION OF THE PERFORMANCE IN Table IV

the constraint. Precision/recall would be even higher if these im-
ages satisfy the constraint strictly.

Precision and recall are pleasing on most tough cases,
reaching the highest 76.53% and 79.76%, respectively. Im-
provements in precision and recall are also obvious on most
groups. Note that the BOAT group (Fig. 12 highlighted in
magenta rectangle) is gray only. Although the faked object
is in color, online feature selection contributes trivially, and
the improvement mainly comes from the online parameter
selection within this group.

As expected, the performance of our method degenerates in
the case where the assumptions do not hold. First, is not
able to be accurately estimated due to: 1) the large viewpoint
changes in GRAF and WALL; 2) the huge scales in BOAT and
BARK; and 3) the large JPEG compression/blur in UBC and
TREES. Second, moving textures in TREES, GRAF, and BOAT
violate our assumption that the scenes are rigid. As shown in
Fig. 16, some bad targeting results are shown in (c). The neg-
ative example of online selection happens in the recall rate of
the TREES group as highlighted in the blue dashed rectangle
in Fig. 12. This failure is due to the rich textures and “moving”
leaves. At the end of Section II, we mentioned small false pos-
itives existing along object edges because of the imperfect esti-
mation of the planar homography and the interpolation in the
warping step. In the TREES group, there are dense edges be-
tween the leaves and the sky. In addition, the intensity changes
across these edges happen to be high. Moreover, the leaves are
waving. Thus the result after subtraction contains large areas of
false positives [Fig. 16(c)]. That is, the targeting step fails on
such cases and online selection starts from a bad foreground as
the red dashed rectangles in Fig. 16(c), although online selec-
tion did its job and made this wrong “foreground” more sepa-
rable from the “background.”
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Fig. 16. Targeting results on GRAF, TREES, and BOAT. (a), (b) Input images.
(c) The targeting results are marked as the red solid curve. The targeting step
is sensitive when there are: 1) rich details; 2) high contrast across the details’
edges; and 3) cases when the homography is hard to estimate.

D. Performance With Respect to Visually Plausible Images

At last, our method is tested on images with visually plau-
sible composites. In this section, comparisons are made among
the following results: 1) targeting results without segmentation
in Section II; 2) results using automatic graph cut with fixed fea-
tures and parameters; and 3) results using automatic graph cut
with online feature/parameter selection.

As shown in Fig. 17, Rows 1 5 are examples with rotation
and zooming that satisfy constraint; Row 6 is a planar scene
case which can also be detected using the proposed method.
Note all the results shown in Fig. 17 are generated without re-
setting any parameters among different runs, which indicates
we can get a pleasing result with the optimal parameters since
the most important features/parameters are selected dynami-
cally via the online selection framework.

The segmentation step takes Fig. 17(c) as inputs. Note that
the boundaries can be extracted as long as (c) indicates a rough
estimation for the fake region.

Note that the method in [12] will fail because the inserted
balloon satisfies lighting conditions (row 1), and the correlation
matching method in [5] is not applicable since the inserted ob-
jects are from unknown sources.

Results in Fig. 17(c) are improved with the segmentation
step, and the results in (e) with online selection are better than
those with fixed features and parameters (d). Note that the
binary map might be slightly different through different runs
since RANSAC is used. However, results in Fig. 17(e) are
generally better than those in (d) with the same binary mask
used during each run.

Also, we extend our method to the single-image case. The
new algorithm is almost the same with the two-image case
except: 1) single image performs a self-matching which finds
the matches within itself; 2) the single-image case does not
need segmentation since the result after targeting step is already
pleasing; and 3) the region with zeros after subtraction is the
fake region, rather than the nonzero region. Fig. 18 shows some

Fig. 17. Experimental results of our method. (a), (b) Original image pairs. (c)
Results after the targeting step. (d) Automatic graph cut results without online
feature/parameter selection. (e) Results with proposed method. Subpictures for
the fake regions are marked with dashed magenta rectangles.

results for the single-image case. Some of the duplications are
hardly noticeable by human eyes, but our method works as
well.

The last experiment is to compare our single-image method
with [4]. Some results are shown Fig. 19. The first observation
is that our method provides similar results as [4] in most cases,
e.g., top two rows. However, when the test image has large re-
gions of repeated textures, [4] might result in false alarms as
shown in the last row of Fig. 19. In terms of time complexity,
our method first estimates the translation using SIFT descrip-
tors, which can be done efficiently using the binary code from
the SIFT authors. Suppose we have SIFT points extracted
from the original image, the matching process can be done in

. Then the duplicated regions are located based on direct
subtraction, with the cost of , where and are the
width and height of the image, respectively. In [4], they extract
the features in a matrix
which can be sorted in . Here denotes the
side length of the minimal segment square, which is typically
much smaller than or . The translation (shift vector) in [4]
can be calculated in in the best case and in
the worst case. So the time complexities of both methods are in
the same magnitude. Based on our implementation, our method
runs slightly faster than [4] since is usually much smaller than

.

V. CONCLUSION

In this work, an automatic fake region extraction method was
proposed using the planar homography constraint and graph cut.



554 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 5, NO. 3, SEPTEMBER 2010

Fig. 18. Experimental results for duplications within single image. (a) The
original images with composites. (b) The self-matching pairs of the images. (c)
The results denoting the fake region.

Fig. 19. Comparison between our single image method and [4]. (a) The test
images. (b) The results by [4]. (c) Our results.

The photographic composites are first targeted with the geomet-
rical constraint, and then extracted via graph cut. To improve the
accuracy and automation, an online selection framework was
adopted during the segmentation. The geometry-based targeting
method is stable and effective, and the proposed segmentation
method further improves the results. Results generated with on-
line selection framework are generally better than those without
it. Actually, the online feature selection acts like a preprocessing
step, while the online parameter selection a postprocessing step
for graph cut, which both improve the performance of graph cut.
Note this segmentation technique can also be applied to other
forensic detection methods, such as [8] and [19].

As argued in [4] that a single forensic tool considered sepa-
rately may not always be reliable to provide sufficient evidence
for all types of digital forgery, the fusion of various tools may
give a comprehensive estimation. Our method may serve as one
of the tools, and also has its limitations. For example, the present
approach is not suitable for the cases when a pair of forged im-
ages have fake objects inserted almost at perfect positions and in
perfect shapes, when a single faked image has no duplicate re-
gion, when the scenes contains nonrigid objects, and when few
feature points (less than four pairs) can be found at the faked ob-
jects. These limitations are to be considered in our future work.
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