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Abstract—Retrieving objects from large image collection is challenging due to the so-called background-interference, i.e., matching

between query object and reference images is usually confused by cluttered background, especially when objects are small. In this

paper, we propose an object retrieval technique addressing this problem by partitioning the images. Specifically, several object

proposals are partitioned from the images by jointly optimizing their objectness and coverage. The proposal set with maximum

objectness score and minimum redundancy is obtained. Therefore,the interference of cluttered background is greatly reduced. Next,

the objects are retrieved based on the partitioned proposals, separately and independently to the background. Our method is featured

by the fine partitioning, which not only removes interferences from background, but also significantly reduces the number of objects to

index. In this way, the effectiveness and efficiency are both achieved, which better suits big data retrieval. Subsequently, feature coding

on partitioned objects generates much meaningful representation, and object level connectivity also introduces novel clues into the

reranking. Extensive experiments on three popular object retrieval benchmark datasets (Oxford Buildings, Paris, Holiday) show the

effectiveness of our method in retrieving small objects out of big data.

Index Terms—Object retrieval, object proposal, partitioning, reranking

Ç

1 INTRODUCTION

VISUAL-BASED retrieval plays an increasing important role
in the area of big data, which is to search a particular

object from a large-scale image or video collection for the
querying object. Different from similar image retrieval, object
retrieval focuses on retrieving sub-image level object, which
usually appears in different background context. Object
retrieval is considered to be a more challenging problem,
since targets usually only occupy small regions on images.
Despite the difficulty, object retrieval is a fundamental prob-
lem with numerous applications on product search, archive
video search, video organization, surveillance, protection of
brand/logo use. In this paper, we study the problem of object
retrieval that differs from traditional similar image retrieval.

In the past decades, there have been numerous studies on
object retrieval, e.g., developingmore advanced feature repre-
sentations, quantization strategy, indexing structures, and
post-processing techniques. Traditional approaches for object
retrieval are usually based on the SIFT feature [1] and Bag-of-
Word (BoW) model [2], where each image is represented as a
holistic high-dimensional sparse vector. Indexed with
inverted file structure, it can efficiently retrieve similar images
in large scale dataset. Other works try to use graph model to
cover the relationship among images. Wang et al. [3] aug-
ments the neighborhood graph with a bridge graph for
approximate nearest neighbor search. Wang and Li [4] uses

the query-driven iterated in neighborhood graph search to
improve performance. Yao et al. [5] uses CCA and PSI to learn
a similarity function and preserve the preference relations.
Recent studies on aggregated feature representation, such as
Fisher vector [6] and VLAD [7], improves the scalability by
further compressing features into a more compact vector.
Compared with BoW, aggregated feature, such as Fisher vec-
tor and VLAD, has a key advantage when retrieving object on
big data, as it only needs several bytes to represent one image,
which is important for retrieval in the context of big data.
Despite their success in similar image retrieval, thesemethods
are not directly applicable for object retrieval. First, image
level representation is ineffective in the context of object
retrieval, since the relevancy is defined at object level. Cou-
pling the target object with its background context into a uni-
fied feature vector makes it difficult to retrieve the objects.
Obviously, a more effective feature representation is
demanded to cope with the objects in reference images. Sec-
ond, the spatial extent of the object is completely ignored in
traditional graph-based re-ranking, which favors similar
image (other than objects) clusters in the ranklist.

Fig. 1 illustrates the “background interference”, which
becomes a big issue while retrieving and re-ranking objects.
Although all of the four reference images contain the same
query object, their VLAD representations are dissimilar, due
to the interference of features from the background context.
Traditional methods can not solve this problem, because the
compressed feature vector does not distinguish the objects
and background in an image. In this work, we address this
problem by adapting image retrieval techniques to object
retrieval.

We tackle the problem of “background interference” with
partitioning. Although the image is difficult to retrieve as a
whole, partitioned objects are still highly similar with the
query (see Fig. 1: the right column). The straightforward solu-
tion is by partitioning the reference image into object pro-
posals [8], [9], [10] for further processing. This strategy
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addresses the background interference problem by separating
the objects from their background. However, subsequent
problems are still challenging. First, large number of object
proposals (1k-2k proposals per image) could flood the mem-
ory to index, which requires much larger memory and time
for retrieval. Second, excessive number of distracting object
proposals could hurt the retrieval performance. As commonly
noticed, the retrieval performance drops quickly asmore irrel-
evant distracting images are added. In a typical image,most of
the generated proposals are not relevant to the query object,
which results in the similar effect of adding more distracting
images.

Two issues need to be specially considered in our frame-
work. 1) How to generate effective feature representation
suitable for object retrieval. Generating compact yet effec-
tive representation is challenging. Previous studies on
object-proposal partitioning guarantee a decent recall rate
with excessive number of object candidates. However, even
fine partition is required, which only generates a few (tens
instead of thousands) proposals and covers as many objects
as possible. 2) How to effectively re-rank in the context of
object retrieval. Most of the traditional re-ranking methods
have the cluster assumption [11] that emphasizes similar-
image clusters. However, this assumption is invalid in
object retrieval. New strategy that favors object-level clus-
ters is studied in this paper.

Our contributions can be summarized as two folds. First,
we propose an effective representation for object retrieval
via partitioning. We jointly optimize the objectness and

coverage to select most representative object proposals for
each reference image to bypass the “background inter-
ference” problem. Second, we rerank the initial ranklist with
an object-level graph, which features object-level rather than
image-level pairwise similarities. Experimental results indi-
cate that our fine partitioning and object level re-ranking
method obtain better performance compared to the baseline.

The rest of this paper is organized as follows. We review
related literatures in Section 2. Section 3 presents our parti-
tioning method, and Section 4 discusses our feature repre-
sentation and re-ranking method based on partitioning.
Section 5 evaluates our method on several object retrieval
datasets, and finally Section 6 concludes this paper.

2 RELATED WORK

Our work is closely related to previous works on feature
representation and visual reranking for object retrieval.

2.1 Feature Representation

Early object retrieval approaches adopt the Bag-of-Words
representation [2], where local features [1] are quantized
according to a visual vocabulary. Popular methods usually
construct a large [12], [13], [14] or hierarchical [15], [16], [17]
vocabulary to improve the discriminative power of the BoW
representation. Although the resultant representation is
very high dimensional, the sparsity nature still enables effi-
cient retrieval by indexing techniques such as inverted file.
Other works like [18] try to use online multi-label active
learning to generate semantic concept representation.

Fig. 1. Illustration of the “background interference”. Each VLAD descriptors has 4 centroids (D=4x128). Top: a query object and its VLAD vector plot-
ted in boxes. Each component of the VLAD vector is represented as a short line segment, just as in [7]. Blue and red indicate positive and negative
components, respectively. Bottom-left: the query object (marked in rectangle) appears in four different reference images. Bottom-middle and right:
extracted VLAD vectors from full image and the objects in rectangles, respectively. From Bottom-middle we can see that although these images
contain same object, when background is included into feature coding, features from relevant images could become totally different.
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Recent studies on aggregated feature vector further com-
press the local features into an even small vector, so that
much larger dataset can be indexed and retrieved efficiently.
Fisher vector [6] as well as its simplified version VLAD [7]
are compact yet discriminative in describing the visual
appearances of images, by encoding the derivatives of the
generative model. These methods significantly reduce the
memory cost for one single image (only tens of byte), which
enables very large scale retrieval. Recent improvements for
VLAD focus on vocabulary adaptation between datasets
[19], multiple vocabulary representation [19], and different
normalization techniques [19], [20].

Besides that, in order to improve the efficiency of retrieval
system [21] considers multiple properties of local features to
design the image index. All previous studies ignore the focus
of objects, which suffers from the background interference
problem. In this paper, we focus on object retrieval and pro-
pose a better representation to deal with background inter-
ference. Our solution leverages the object proposals that
generate thousands of bounding boxes from an image. Previ-
ous studies on object proposals include objectness [22]:
which combines tasks of localization and classification to
obtain the “objectness”, Selective search [9], [23], which use
the segmentation and hierarchy structure to find objects, and
BING [8], which is a simple yet efficient solution to calculate
the objectness by leveraging the normalized gradient for fast
computation. As saliency sometimes could also be consid-
ered as a clue of objects, recently, some methods have been
proposed to solve the problem, such as [24], [25].

2.2 Visual Reranking

Previous works on visual reranking are mostly based on the
following assumption [26]: the images with the dominant
patterns are expected to be ranked higher than others.
Under this assumption, various methods are proposed to
seek the “dominant pattern”.

Clustering based method [27] clusters the images in the
ranklist to find the dominant patter. Assume that relevant
images tend to be more similar to each other than to irrele-
vant ones.

Pseudo-relevance feedback [28], [29] assumes that the
top-ranked documents are “pseudo-relevant” to the query,
which can be treated as positive examples to estimate the
dominant pattern. After each iteration, the visual pattern is
updated according to the detected pattern.

Graph-based reranking [30] is another popular method
motivated by PageRank [31]. This technique is usually
based on a graph with nodes as the images and edges as the
similarities between nodes. The dominant pattern here is
discovered by propagating the relevancy among nodes to
find the stationary probability.

Although there have been many visual reranking meth-
ods developed, all of them treats the dominant visual pat-
tern as full image. Thus they are not suitable for object
retrieval, where an object-level pattern is usually expected
in the retrieved images. In this paper, we seek the object-
level pattern for re-ranking by object partitioning.

3 OBJECT PARTITIONING

In this section, we first discuss the background interference
problem, and then propose our object partitioning method

to address this problem. Fig. 3 shows the framework of our
retrieval system. First we partition the reference images to
generate candidate object proposals (Section 3.2). Then we
use a novel method (Section 3.3) to refine the partition.

3.1 Background Interference

Background interference stands for the feature degeneration
occurred when background is considered in object retrieval.
In natural images, an object, which only covers a part of the
image, is likely to appear in diverse background. For state-
of-the-art aggregated feature representation, such as VLAD
[7], local features from an image are first quantized to visual
words separately, and then the residual vectors are accumu-
lated as the final representation. Combined with PCA, this
representation significantly improves the scalability by com-
pressing the local features into a compact vector. However,
we argue that such representation is not suitable for object
retrieval, since objects usually cover only some region of the
image, and local features from the background confuse the
representation. After compressing the local features into a
compact vector, it becomes extremely difficult to separate
the object from its background. Target object will be diluted
in the ocean of background noise. As illustrated in Fig. 1, the
interference of background degenerates the VLAD represen-
tation adversely as more background is included. A single
image-level representation is not adequate any more in the
context of object retrieval. The single vector can be totally dif-
ferent from the query, although all of the reference images in
Fig. 1 contain the same querying object. As a result, the dis-
crimination power is compromised due to background inter-
ference. However, if the VLAD vector encodes only the
target object, the resultant representation ismuchmore effec-
tive for retrieval/reranking. Next, we exploit to address the
background interference problem through partitioning.

3.2 Partitioning with Object Proposals

As a good starting point, we adopt the well-studied object
proposals to pre-partition each image into thousands of
bounding boxes. This section discusses different techniques
for generating object proposals.

There have been a number of previous studies on object
proposal. The most famous works include Objectness [10],
Selective Search [9] and BING [8]. Objectness [10] measures
the likelihood of a bounding box containing a generic
(category-independent) object. It combines multiple cues of
edge density, color/texture contrast and consistency to evalu-
ate the objectness score for an arbitrary image area. Selective
Search [9] starts with the image over-segmentation, and grad-
ually merges small regions to bigger ones. The benefit of
this strategy is the hierarchical structure among proposals.
However, such hierarchy is less helpful in our case, where
direct object proposals at different sizes already gives a rather
good start. Moreover, we also expect more proposals on
“important” areas with multiple overlapping objects. Recent
work of BING [8] binarizes the normalized gradients of a
bounding box for fast processing, which outperforms previ-
ous works on both effectiveness and efficiency. Thus in this
work,we adopt BING to generate initial object proposals.

We follow the default setting of BING [8], and partition
each reference images into thousands of candidate pro-
posals. Before feeding into the selection algorithm in Section
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3.3, we first pre-process the results to rule out unreliable pro-
posals for retrieval. By observing the results generated by
BING, we remove three types of bounding boxes into consid-
eration: (1) Empty boxes. It does not help to include boxes
that are with a few or no SIFT features inside. (2) Skinny
boxes. Boxes are with extreme aspect ratios1 are also
removed in our implementation. (3) Too large boxes. Boxes
covers most (80 percent) of the image area suffer less from
background interference. Since we include the original
image for indexing anyway, including too large boxes does
not contribute toomuch to the retrieval.

3.3 Proposal Selection via Quadratic Optimization

After the image partitioning methodology introduced in
Section 3.2, each image results in thousands of proposals.
Although directly indexing all these proposals solves the
“background interference” problem, it creates new prob-
lems in efficiency and memory load. In this section, we
address this problem with a novel proposal selection via
quadratic optimization.

Our method is motivated with two observations. On one
hand, indexing highly overlapped bounding boxes does not
effectively increase the information quantity. On the other
hand, for a natural image, such as Fig. 2, there are only tens
of objects that could be possibly queried by a user. It is pos-
sible to select only a few representative proposals without
decreasing too much in retrieval performance. Next, we
propose an effective proposal selection strategy by jointly
optimizing coverage and objectness.

Given n object proposal PI extracted from the image I,
we aim to select a subset (k) representative proposals, which
covers salient objects in I as much as possible and reduces

the object redundancy. Theoretically, there are n
k

� �
possible

combinations to choose from, which is computational infea-
sible. In this work, we pose this as an optimization problem,
which favors high saliency, low overlap subset. Specifically,
we propose to solve the following problem:

S� ¼ argmaxSW
TS� 1

2
�STOS; (1)

where O is a n� n overlap matrix encoding the overlap
ratio for pairwise n proposals in each reference image. In
our implementation, the intersection over union (IoU) is
adopted to measure the overlapping ratio between two
object proposals (bounding boxes). Therefore, O is a sym-
metry matrix with zero-entries along the diagonal. W is the
n dimensional weight vector for the objectness score. In our
case,W is assigned to the confidence score of the object pro-
posals generated by BING, where higher value indicates
more likelihood of being an object. S is the n dimensional
indicator variable vector to optimize, in which the compo-
nents corresponding to the selected proposals are assigned
to one, and zeros otherwise. � is the balance parameter, we
set to 0.1 in our experiments.

Generally, the first term ensures a high objectness score
of the selected objects, while the second term (with the
minus sign) minimizes the overlap of the selected objects
and encourage exploration to less salient areas. By optimiz-
ing the Eq. (1), we tradeoff between the objectness and cov-
erageness with the parameter �. However, directly
optimizing this discrete quadratic optimization problem is
NP-hard. In this paper, we relax the solution space of S to
be continuous. That is, Si; i ¼ 1; 2; . . . ; n is relaxed to the
range of ½0; 1�, which indicates the probability of selecting
the ith proposal. With this relaxation, the problem becomes
a standard quadratic optimization. Since our overlap
matrix O is not positive semidefinite, no closed form solu-
tion exists in our case. Instead, we use gradient descent
with multiple random initializations to solve Eq. (1). Then
we binarize S by setting the top-k entries as one (zeros for
others). Although other sophisticated methods (e.g., inte-
rior point, active set) exist, we find that our simple solution
is efficient (usually convergence within 40 iterations) and
works well in practice. Fig. 2 shows an example of a typical
image after the proposal selection. Most of the salient
objects are captured with the top k ¼ 5 proposals. By
inspecting the example, we can see that our method prefer
to select objects like person, ball and logo rather than the
background grass and sky. Although there are some over-
laps among selected proposals, our method covers most
objects in the image. Note that determining the number of
proposals (k) is a tricky problem. However in most cases,
there are only tens of objects in a typical image, despite the
variations among images. Therefore, we fix k for all images
in our method.

By formulating the proposal selection as a joint optimi-
zation of objectness and coverageness, we capture most
representative yet small overlapped proposals and reduce
the number of object candidates from thousands to tens.
This selection strategy could significantly reduce the
cost of computational cost for each reference image as
well as the memory requirement, which is crucial to real
applications.

4 OBJECT RETRIEVAL WITH PARTITIONING

In this section, we will further exploit the object-level visual
relationship among selected proposals for retrieval and
reranking.

Fig. 2. Example object proposals selected in a typical image. Top k ¼ 5
object proposals are plotted for visualization.

1. Larger than 4 or smaller than 1/4.
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4.1 Object Retrieval via Partitioning

With the partitioning presented in Section 3, we manage to
get only a small number of proposals from each image,
while keeping the key objects for retrieval. VLAD is
extracted separately for each of the top k objects.

During online retrieval, each partitioned object is
retrieved independently without considering the image
level information. That is, object level relevancy score is
evaluated between the query and partitioned object pro-
posals. The relevancy score for each image is simply taken
as the max score of its all objects. Since our method is based
on partitioning, we name our method after “pVLAD”, which
is short for partition VLAD.

4.2 Reranking Based on Objects

Traditional ranking method based on image-level connec-
tivity, which is asymmetric toward the task of object
retrieval. In this section we will explore two new object-
level ranking methods based on the relationship in a object
matching graph. Following experiments show that our new
ranking methods could improve the performance of final
system compared with previous methods.

This section we first introduce a reranking method based
on object-level partitioning and PageRank algorithm [31].
Similar to the construction of webs on the Internet, which
connect each other by hyperlinks, we build our object
matching graph and operate reranking method on it. Tradi-
tional graph-based ranking model, like [32] only uses the
image-level similarity to construct the matching graph.
Meanwhile we build object-level matching graph based on
selected proposals in previous section. Rather than [32] uses
the symmetry similarity measurement to build the graph
model, we use the matching graph model introduced by
Philbin and Zisserman [33]. Compared with establishing
image-level matching graph, our graph truly cover the
visual-link relationship among objects rather than images.

4.2.1 Object Graph

First, we use every selected proposals above as query to
search the same object on the whole reference dataset after
partitioning. The system returns the ranking list of reference

proposals as well as its similarity score. After all proposals
finish their search, we use these connections to construct the
object matching graph: G ¼ fV;Egwhere V are nodes repre-
senting query proposals, E are edges. For two nodes : node i
(query) , node j (reference), one edge Eij exists between
them if and only if the reference proposal appears in the
query one’s retrieval ranking list, which means the graph
may be asymmetry. Note that our graph is based on object-
level, so one image could have several corresponding pro-
posals nodes in the graph, such a design is robust toward
multi-object appeared in single image.

4.2.2 Object Based Reranking

With the object-level matching graph, we run our reranking
method on it:

Hiþ1
s ¼ mMrH

i
s þ ð1� mÞB; (2)

where Hs is the n� 1 ranking score measuring the signifi-
cance of each proposal, it is initialized as the retrieval scores;
Mr is adjacent matrix of all proposals. m is a damping factor,
we set to 0.8 in practice, andB is a n� 1 initial ranking score
of these proposals. Compared with traditional reranking
method, which directly uses the visual similarity as the ele-
ment of this matrix, we use the sorted placement in corre-
sponding query return list as a measurement of similarity
between two proposals, that means for eachmij inMr :

mij ¼
1
t if j 2 return list (i)
0 otherwise,

�
(3)

where i is the index of query proposal, j is the index of one
reference proposal, and t is the rank of jth proposal
appeared in the ith query return list. For example, if the
eighth proposal appears in the seventh query on the fifth
placement then m78 ¼ 1=5. Based on the object-level match-
ing above, this design configures the visual relationship
around those related proposals. Instead of directly using
visual similarity, such as cosine similarity or euclidean dis-
tance, using ranking placement as the similarity measure-
ment provides another perspective to represent this visual
relationship. We name our reranking as “obj-Rerank” since
the reranking is based on object level connectivity.

Fig. 3. The framework of our object retrieval method. Our framework is composed with two major steps: object partitioning and object retrieval. For
object partitioning, we first generate candidate proposals, then we design a novel selector to choose most discriminative proposals from all candi-
dates on each image (Section 3). In object retrieval, we consider three aspects. We obtain the VLAD for every selected proposal and combine them
as the final representation of this image. Then we construct the object-level matching graph for each dataset. After retrieving query object based on
the pVLAD, we exploit to rerank this return list in object-level (Section 4.2). We also expand this return list by considering the relationship among
these proposals on the graph (Section 4.3).
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4.3 Radius Sensitive Expansion

We further explore the object-level graph from another per-
spective. As illustrated in Fig. 4, similar proposals are con-
nected and closer in the object matching graph while
different proposals are far from each other or disconnected.
We use the G to expand our returned ranking list. This pro-
posal matching graph provides a global similarity connec-
tion relationship for every candidate in reference dataset,
and this global measurement could be complementary
toward the special query search progress by combining
local and global measurement together. We define r as
the expansion search radius starting from nodes which are
considered to expand the list. After observation from Fig. 4
we found that only portions of those connected proposals
are beneficial to the promotion of retrieval, which means
the true positive proposals is sensitive to radius value of r :
if r is too large, false positive would be included into return
list, meanwhile if r is too small, true positive samples
will be excluded. In the experiment section we will exploit
the influence from different r values. We expand the initial
query ranking list with its corresponding object graph
neighbors in G. Following experiments show that our
method could improve the performance of retrieval to some
extent. Here is the solution for the expansion:

Ri ¼ Eri �Ri; (4)

where Ri is the ith element in the initial ranking list, And
Eri is a set of the nodes within the scope of the ri (defined

by Eq. (5)). Then we define the � operation as obtaining the
union of two set and unique the element in ranking list.
That means if there are some nodes (proposals) in the object
matching graph meeting this condition above, they will

combine with the original element as the new retrieval ele-
ment. In practice, ri is decided by the Ri and its next direct
neighbor in the ranking list:

ri ¼ Ri �Ri�1 if Ri�1 2 return listðRiÞ
0 otherwise.

�
(5)

We use euclidean distance to measure the ri. From Eq. (5)
we can see that the max radius is set as the difference
between continuous two proposals in the retrieval list. In
practice, this operation could be efficient by leveraging the
object graph built above. We name this method as RSE,
which is short for “Radius Sensitive Expansion”. Note that,
RSE is different from ‘Discriminative query expansion’ in
[14], as they use enrich query to obtain positive and nega-
tive data and train a linear SVM to sort reference images.
Radius Sensitive Expansion could be viewed as an explora-
tion for the global similarity property of the object graph.
Higher ranked candidates in ranking list will be re-
considered with its global similar neighbors in the object
graph. Following experiments show that expanding the
ranking list by utilizing this property could make the result
more complete.

5 EXPERIMENTS

In this section, we evaluate our method on three popular
object retrieval datasets. We start by introducing the data-
sets (Section 5.1) used in our experiments and the imple-
mentation details (Section 5.2), and then compare our
methods with the baseline VLAD [7].

5.1 Datasets

Three publicly available object retrieval datasets are used in
our evaluation. The mean Average Precision (mAP) is used
as our evaluation metric throughout our evaluation. Table 1
summarizes the average area covered by each object on the
query image for different datasets. In general, Oxford and
Paris are included into our evaluation as object retrieval
datasets, and Holiday is adopted as a performance compari-
son on similar image search.

5.1.1 Oxford Buildings

The Oxford Buildings dataset [13] contains 5,062 images
downloaded from Flickr using keyword search. The collec-
tion is manually annotated to generate a comprehensive
ground truth for 11 different landmarks, each represented
by 5 possible queries. This gives a set of 55 queries for
evaluation. Unlike full-image retrieval, we only use the
bounding-box object in these 55 images for queries.

5.1.2 Paris

The Paris dataset [12] consists of 6,412 images crawled from
Flickr by searching for particular Paris landmarks, such as

Fig. 4. Illustration of Radius Sensitive Expansion. Here is an example of
sensitive radius in the object contain graph. A is the ranked object pro-
posal node in the graph, while r is the sensitive radius, and B � E are
connected candidates within the r. Since r is the search radius begin
from A, it’s necessary to take B � E into the consideration of the ranking
process. F � I are proposals connected with the reference node (A) but
beyond the radius r. J are those proposal which has no relationship with
the reference node in this graph.

TABLE 1
Average Area (%) Covered by the Querying Objects

on the Query Images on Different Datasets

Dataset Oxford Paris Holiday

Average area ratio 26.7% 27.8% 40.5%
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“Paris Eiffel Tower” and “Paris Triomphe”. Similar to Oxford
Buildings, this dataset also has 55 queries for evaluation.

5.1.3 Holiday

The Holiday dataset [34] contains 1,491 images for personal
holidays photos, among which 500 images are used as
queries and the rest are manually labeled as ground-truth.
Since this dataset does not provide bounding box for the
query, we manually label the bounding box for each query
image by inspecting the common object (area) among
ground-truth images.

5.2 Implementation Detail

We adopt the SIFT descriptor [1] with Hessian Affine detec-
tor and VLAD [7] as the feature representation. A vocabu-
lary with 64 centers are used to quantize local features.
Unless explicitly specified, the radius (r) used in Radius
Sensitive Expansion is set to 25, and the number of object
proposals selected from each image (k) is set to 15 on our
sensitivity tests (details in Section 5.3 and 5.5).

5.3 VLAD versus pVLAD

5.3.1 Different Proposals Generation

We first compare different proposals generation method in
our pVLAD: BING, Selective Search [9], and Edge Boxes
[35]. Table 2 shows mAP performance and time cost per
image around them. From the table we can see that BING
obtains higher performance and faster than other two meth-
ods. So we choose BING to generate proposals.

5.3.2 Overall Performance

We compare our retrieval method, pVLAD, with the stan-
dard VLAD [7] to evaluate our partitioning strategy. Table 3
compares the performance in mAP for different retrieval
methods. As shown, our method outperforms VLAD on
all three datasets. In particular, our method improves the
mAP by 23.0/10.6/3.7 percent relatively to the baseline on
Oxford/Paris/Holiday. The improvements on different
datasets vary differently. For instance, pVLAD only slightly
improves the performance on Holiday dataset, but obtain
better performance on Oxford and Paris. This phenomenon
can be explained with the size of objects in different

datasets. From the Table 1 we notice that the bounding box
for the query object covers larger area on Holiday than on
Paris and Oxford. Generally, smaller area covered by the
object results in more severe background interference. Since
our partition-based method mainly addresses the back-
ground interference problem, it improves more on datasets
with smaller objects, e.g., Oxford dataset. On the contrary,
pVLAD only slightly improves the baseline on Holiday,
which is more like a similar image retrieval dataset. Note
that, in [36], authors extract deep conv-net features instead
of VLAD from each proposal for the task of Classification
and Retrieval, they obtain 0.887 mAP on Holiday, in the
future we will explore to use deep feature in our method.

5.3.3 Number of Proposals Selected Per Image

We also test the sensitivity of the number of proposals
selected (k) for each image. As shown in Fig. 5, the perfor-
mance goes up as we use more object proposals, and
reaches the peak around k ¼ 10-20. However, even more
proposals do not introduce further improvement and finally
hurt the performance. As k increases, it becomes more likely
to include all possible objects in retrieval and reranking,
and thus the recall could be improved. However, too large k
will introduce too much noisy proposals for processing. We
observe that for most of the nature images, there are only
5-10 objects per image, which are likely to be queried by a
user. Sampling too many object proposals will inevitably
introduce severe noises, and thus hurt the retrieval preci-
sion. When k goes beyond 20, the newly introduced objects
are mostly bounding boxes featuring less meaningful
regions that are unlikely to be queried, we set k ¼ 15 in our
experiments.

5.4 Object-Based Reranking

Here we evaluate our object-based reranking method. As
shown in Table 3, we can observe that our reranking
method (obj-Rerank) improves the mAP over pVLAD by
0.3/1.5/1.2 percent relatively on Oxford/Paris/Holiday.
Although the performance improvement is small, our obj-
Rerank does boost novel results that were poorly ranked in
the original list. Fig. 8 shows several example images as

TABLE 2
Performance and Time Comparison for Different

Proposal Methods

Method BING Selective Search Edge Boxes

mAP 0.3583 0.3560 0.3073
Time (Second) 0.003 3.790 0.250

TABLE 3
Performance (mAP) Comparison for Different Retrieval Methods

Oxford Paris Holiday

VLAD 0.2912 0.3857 0.5019
Image-Rerank 0.3215 0.4046 0.5103
pVLAD 0.3583 0.4265 0.5207
obj-Rerank 0.3595 0.4331 0.5271
RSE 0.4095 0.4745 0.5303

Fig. 5. Sensitivity test on number of object proposals adopted (k) in each
reference image.
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well as their ranks in pVLAD and obj-Rerank. Since the
object-level connectivity is modeled in our object graph
based reranking, obj-Rerank gives much better results for
small object. For example, the third image in the top-left
example is boosted significantly (from 44 to 29) due to the
object-level reranking. We also use the image-level feature
to rerank the return lists, As shown in Table 3, the pVLAD
could outperform Image-Rerank in all three datasets.

5.5 Radius Sensitive Expansion

We also test our Radius Sensitive Expansion (RSE) on the
datasets. Table 3 (last row) shows that our RSE improves
the performance significantly over pVLAD. For RSE, we
obtain an improvement of 14.3/11.3/1.8 percent relative to
pVLAD on Oxford/Paris/Holiday dataset, which shows

the effectiveness of our method. Qualitative examples are
given in Fig. 9, where novel small objects (in yellow) are
pulled from the object-graph based expansion, while for the
original retrieval ranklist, these objects are easily missed
due to the noise in partitioning (pVLAD) or background
interference (VLAD).

5.5.1 Sensitivity Test on the Radius (r)

We further explore the effect of the radius (r) used in our
Radius Sensitive Expansion. Fig. 6 plots the performance
against different r. From the result in Fig. 6 we can see
that different r value in Radius Sensitive Expansion have
different impact on the final result. Just as Fig. 4 shown,
when the value of r large, false positive may be merged
into return list, when the value r is small, true positive
may be excluded from the list. We test different radius
(r ¼ 5-30) on three datasets. We can see that on Oxford
and Paris larger r gives better results and the performan-
ces become steady when r > 25. While for Holiday,
the performance is not sensitive to r. This is because on
Holiday each query only have about two ground-truth
images on average (500 queries and 991 reference
images), and the dataset is relatively small compared to
Paris and Oxford. These proposals connect less similar
nodes on the graph than other datasets. So varying r does
not effect the performance too much.

Fig. 6. Sensitivity test on the radius (r) in Radius Sensitive Ranking on
different datasets.

TABLE 4
Performance (mAP) Comparison with BoW Methods

Method mAP size of vocabulary

AKM [13] 0.618 1000k
RootSIFT [14] 0.881 1000k
HPM [37] 0.692 500k
[38] 0.738 1000k
pVLAD 0.358 1k

Fig. 7. Scalability test on different sizes of the retrieval dataset.

Fig. 8. The comparisons between pVLAD and obj-Rerank for four query images and their ranking results with the ranks plotted below. As shown,
smaller objects receive more boosting in their ranks, due to the object level connectivity used in our object graph based reranking.
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5.6 Comparison with State-of-the-Art BoW Methods

Although pVLAD is based on VLAD, we still compare our
method with some BoW based methods. As Table 4 shown,
BoW based methods usually need large vocabulary for
better performance. Meanwhile pVLAD only needs much
smaller vocabulary, which is important for retrieving object
in the context of big data.

5.7 Scalability

In order to test the scalability of our method, we add
another 1 million Flickr images from the YFCC100M
dataset [39] as distracters. The performance is shown in
Fig. 7. From results we can see that our method scales
well for large dataset.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel object retrieval
framework to address the “background interference” prob-
lem by adapting state-of-the-art image retrieval techniques
to object retrieval. Our solution performs in the manner of
partitioning, that divides the whole image into tens of object
candidates which are retrieved/reranked separately and
independently to the background. More effective feature
representation and reranking in the context of objet retrieval

are developed with this partitioning. Experimental results
on popular object retrieval datasets show a clear advantage
of our method in object retrieval. In our future work, we
plan to further exploit the object-level semantic relationship
in the graph to capture more related instances for query.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (Nos. 61572493, Grant U1536203), 100
Talents Programme of The Chinese Academy of Sciences,
and Strategic Priority Research Program of the Chinese
Academy of Sciences (XDA06010701).

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[2] J. Sivic and A. Zisserman, “Video Google: A text retrieval
approach to object matching in videos,” in Proc. Int. Conf. Comput.
Vis., Oct. 2003, vol. 2, pp. 1470–1477.

[3] J. Wang, J. Wang, G. Zeng, R. Gan, S. Li, and B. Guo, “Fast neigh-
borhood graph search using Cartesian concatenation,” inMultime-
dia Data Mining Analytics. Berlin, Germany: Springer, 2015,
pp. 397–417.

[4] J. Wang and S. Li, “Query-driven iterated neighborhood graph
search for large scale indexing,” in Proc. 20th ACM Int. Conf. Multi-
media, 2012, pp. 179–188.

Fig. 9. Example query as well as the retrieved images by two different methods: pVLAD and RSE. Images with dashed yellow borders are results
expanded through our RSE. Note that pink rectangles in the first column stand for the query object in image.

52 IEEE TRANSACTIONS ON BIG DATA, VOL. 3, NO. 1, JANUARY-MARCH 2017



[5] T. Yao, T. Mei, and C.-W. Ngo, “Learning query and image simi-
larities with ranking canonical correlation analysis,” in Proc. IEEE
Int. Conf. Comput. Vis., 2015, pp. 28–36.

[6] F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies
for image categorization,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recog., 2007, pp. 1–8.

[7] H. J�egou, M. Douze, C. Schmid, and P. P�erez, “Aggregating local
descriptors into a compact image representation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2010, pp. 3304–3311.

[8] M.-M. Cheng, Z. Zhang, W.-Y. Lin, and P. Torr, “Bing: Binarized
normed gradients for objectness estimation at 300fps,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., 2014, pp. 3286–3293.

[9] K. E. Van de Sande, J. R. Uijlings, T. Gevers, and A. W. Smeulders,
“Segmentation as selective search for object recognition,” in Proc.
IEEE Int. Conf. Comput. Vis., 2011, pp. 1879–1886.

[10] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness
of image windows,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34,
no. 11, pp. 2189–2202, Nov. 2012.

[11] X. Tian, L. Yang, J. Wang, Y. Yang, X. Wu, and X. Sheng Hua,
“Bayesian video search reranking,” in Proc. 16th ACM Int. Conf.
Multimedia, 2008, pp. 131–140.

[12] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost in
quantization: Improving particular object retrieval in large scale
image databases,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2008, pp. 1–8.

[13] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2007, pp. 1–8.

[14] R. Arandjelovic and A. Zisserman, “Three things everyone should
know to improve object retrieval,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2012, pp. 2911–2918.

[15] D. Nister and H. Stewenius, “Scalable recognition with a vocabu-
lary tree,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2006,
pp. 2161–2168.

[16] X. Wang, M. Yang, T. Cour, S. Zhu, K. Yu, and T. X. Han,
“Contextual weighting for vocabulary tree based image retrieval,”
in Proc. IEEE Int. Conf. Comput. Vis., 2011, pp. 209–216.

[17] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2007, pp. 1–8.

[18] X.-S. Hua and G.-J. Qi, “Online multi-label active annotation:
Towards large-scale content-based video search,” in Proc. 16th
ACM Int. Conf. Multimedia, 2008, pp. 141–150.

[19] R. Arandjelovic and A. Zisserman, “All about VLAD,” in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog., 2013,
pp. 1578–1585.

[20] J. Delhumeau, P.-H. Gosselin, H. J�egou, and P. P�erez, “Revisiting
the VLAD image representation,” in Proc. 21st ACM Int. Conf.
Multimedia, 2013, pp. 653–656.

[21] L. Zheng, S. Wang, Z. Liu, and Q. Tian, “Fast image retrieval:
Query pruning and early termination.” IEEE Trans. Multimedia,
vol. 17, no. 5, pp. 648–659, May. 2015.

[22] H. Harzallah, F. Jurie, and C. Schmid, “Combining efficient object
localization and image classification,” in Proc. IEEE 12th Int. Conf.
Comput. Vis., 2009, pp. 237–244.

[23] I. Endres and D. Hoiem, “Category independent object
proposals,” in Proc. Eur. Conf. Comput. Vis., 2010, pp. 575–588.

[24] H. Fu, X. Cao, and Z. Tu, “Cluster-based co-saliency detection,”
IEEE Trans. Image Process., vol. 22, no. 10, pp. 3766–3778, Oct. 2013.

[25] X. Cao, C. Zhang, H. Fu, X. Guo, and Q. Tian, “Saliency-aware
nonparametric foreground annotation based on weakly labeled
data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 8,
pp. 1253–1265, Jun. 2016.

[26] T. Mei, Y. Rui, S. Li, and Q. Tian, “Multimedia search Reranking:
A literature survey,” ACM Comput. Surveys, vol. 46, no. 3,
pp. 38:1–38:38, Jan. 2014.

[27] W. H. Hsu, L. S. Kennedy, and S.-F. Chang, “Video search Rerank-
ing via information bottleneck principle,” in Proc. 14th ACM Int.
Conf. Multimedia, 2006, pp. 35–44.

[28] R. Yan, A. G. Hauptmann, and R. Jin, “Multimedia search with
pseudo-relevance feedback,” in Proc. 2nd ACM Int. Conf. Image
Video Retrieval, 2003, pp. 238–247.

[29] A. Amir, et al., “IBM research TRECVID-2005 video retrieval
system,” in Proc. TRECVIDWorkshop, 2005.

[30] W. H. Hsu, L. S. Kennedy, and S.-F. Chang, “Video search Rerank-
ing through random walk over document-level context graph,” in
Proc. 15th ACM Int. Conf. Multimedia, 2007, pp. 971–980.

[31] P. Lawrence, B. Sergey, R. Motwani, and T. Winograd, “The
PageRank citation ranking: Bringing order to the web,” Stanford
Univ., CA, Tech. Rep., 1998.

[32] Y. Jing and S. Baluja, “Visualrank: Applying PageRank to large-
scale image search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30,
no. 11, pp. 1877–1890, Nov. 2008.

[33] J. Philbin and A. Zisserman, “Object mining using a matching
graph on very large image collections,” in Proc. 6th Indian Conf.
Comput. Vis. Graph. Image Process., 2008, pp. 738–745.

[34] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and
weak geometric consistency for large scale image search,” in Proc.
10th Eur. Conf. Comput. Vis., 2008, pp. 304–317.

[35] C. L. Zitnick and P. Doll�ar, “Edge boxes: Locating object proposals
from edges,” in Proc. 13th Eur. Conf. Comput. Vis., 2014, pp. 391–
405.

[36] L. Xie, R. Hong, B. Zhang, and Q. Tian, “Image classification and
retrieval are one,” in Proc. 5th ACM Int. Conf. Multimedia Retrieval,
2015, pp. 3–10.

[37] Y. Avrithis and G. Tolias, “Hough pyramid matching: Speeded-
up geometry re-ranking for large scale image retrieval,” Int.
J. Comput. Vision, vol. 107, no. 1, pp. 1–19, 2014.

[38] C.-Z. Zhu, H. J�egou, and S. Satoh, “Query-adaptive asymmetrical
dissimilarities for visual object retrieval,” in Proc. IEEE Int. Conf.
Comput. Vis., 2013, pp. 1705–1712.

[39] B. Thomee, et al., “The new data and new challenges in multime-
dia research,” arXiv:1503.01817, 2015.

Zhiyong Chen received the BE degree from the
School of Information Science and Engineering,
Lanzhou University, in 2013. He is a senior mas-
ter student of the School of Information Science
and Engineering, Lanzhou University, China. His
current research interests include image retrieval,
object detection, and part classification.

Wei Zhang is an Assistant Professor in Institute
of Information Engineering, Chinese Academy of
Sciences, Beijing 100093, China. He received his
PhD degree from Department of Computer Sci-
ence in City University of Hong Kong, Kowloon,
Hong Kong, in 2015. He received the BEng and
MEng degrees from Tianjin University, Tianjin,
China, in 2008 and 2010, respectively. Before
joining Chinese Academy of Sciences, he was a
visiting scholar in DVMM group of Columbia
University, New York, NY, USA, in 2014. His

research interests include large-scale visual instance search and mining,
multimedia and digital forensic analysis.

Bin Hu is a professor in the School of Information
Science and Engineering, Lanzhou University,
China; dean of Technical Committee of Coopera-
tive Computing, China Computer Federation;
director of China branch of Web Intelligence Con-
sortium (WIC); director of China branch of Inter-
national Society for Social Neuroscience; and
adjunct professor, Department of Computer Sci-
ence, ETH, Zurich, Switzerland. His research
fields are cognitive computing, context aware
computing, and pervasive computing, and has

published more than 100 papers in peer reviewed journals, conferences,
and book chapters. The works have been funded by quite a few famous
international funds, e.g., EU FP7, HEFCE, U.K., NSFC, China, and
industry. He has served more than 60 international conferences as a
chair/pc member and offered about 40 keynotes/talks in high ranking
conferences or universities, and has also served as editor/guest editor in
about 10 peer reviewed journals in computer science.

CHEN ET AL.: RETRIEVING OBJECTS BY PARTITIONING 53



Xiaochun Cao received the BE and ME degrees
both in computer science from Beihang Univer-
sity, China, and the PhD degree in computer sci-
ence from the University of Central Florida, with
his dissertation nominated for the university level
Outstanding Dissertation Award. He is a profes-
sor at the Institute of Information Engineering,
Chinese Academy of Sciences. He is also a visit-
ing professor in the School of Information Sci-
ence and Engineering, Lanzhou University. After
graduation, he spent about three years at Object-

Video Inc. as a Research Scientist. From 2008 to 2012, he was a profes-
sor at Tianjin University. He has authored and coauthored more than 80
journal and conference papers. In 2004 and 2010, he received the Piero
Zamperoni Best Student Paper Award at the International Conference
on Pattern Recognition. He is a senior member in IEEE .

Si Liu received the bachelor degree from Experi-
mental Class of Beijing Institute of Technology.
She obtained PhD degree from Institute of Auto-
mation, Chinese Academy of Sciences. She is
an associate professor in Institute of Information
Engineering, Chinese Academy of Sciences.
She was a research fellow in Learning and Vision
Research Group at the Department of Electrical
and Computer Engineering, National University of
Singapore. Her current research interests include
object categorization, object detection, image
parsing, and human pose estimation.

Dan Meng received the PhD degree in computer
science from the Harbin Institute of Technology,
in 1995. He is currently a professor with the Insti-
tute of Information Engineering, Chinese Acad-
emy of Sciences, Beijing. His research interests
include high-performance computing and com-
puter architecture. He is a senior member of the
China Computer Federation.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

54 IEEE TRANSACTIONS ON BIG DATA, VOL. 3, NO. 1, JANUARY-MARCH 2017



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


