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ABSTRACT

Image compositing technology has become popular for

tampering with digital photographies. We describe how such

composites can be detected by enforcing the geometric and

photometric constraints from shadows. In particular, we ex-

plore (i) the imaged shadow relations that are modeled by the

planar homology, and (ii) the color characteristics of the shad-

ows measured by the shadow matte. Our approach efficiently

extracts these constraints from a single image and makes use

of them for the digital forgery detection. Experimental results

on visually plausible images demonstrate the performance of

the proposed method.

Index Terms— Digital Forensics, Planar Homology,

Shadow Matte

1. INTRODUCTION

Matting and compositing are important operations in the pro-

duction of special effects [1]. Since then, image region copy

and paste has become one of the most common video edit-

ing and manipulating techniques due to its simplicity. Trivial

tricks, including frame and region duplication across frames,

can be detected by correlation based algorithms [2, 3], even

when the camera moves [4]. However, the above methods as-

sume the composited regions or frames are from known im-

ages or videos. They will fail in the case that the source and

target images are different. For example, in Fig. 1 (a), Brad

was photographed on a Caribbean island in 2005 while An-

gelina was taken in Virginia several years earlier.

Geometry and photometry based methods are also used

as evidence of tampering. The former algorithms typically

enforce the consistencies in the camera internal parameters

including skew [5] and principal point [6]. The latter ap-

proaches [7, 8] use inconsistencies in the lighting for detect-

ing forgeries. While a person’s eyes are common in the im-

ages and can be used for the estimation of camera internal

parameters [6] or lighting inconsistencies [8] when the eyes

are sizable, they are not always available or detectable in the

real images, e,g. people with sunglasses as shown in Fig. 1.

Theoretically, the lighting direction inconsistency in Fig. 1

can be estimated using [7]. However, we attack this problem
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Fig. 1. It is difficult for the current Image matting and com-

positing technology to satisfy both geometric and photomet-

ric constraints. (a) Star cover of Pitt and Jolie. (b) and (c)

Shadow matte values in RGB channels (top to bottom) of the

two regions marked in black dashed rectangles in (a). By the

analysis of shadow matte values of the shadow regions as de-

tailed in text, the tampering is obvious.

in both photometric and geometric points of view, and the ge-

ometric constraint used is also different from [7].

Shadows provide important visual cues for depth, shape,

contact, and lighting in our perception of the world [9]. In

this paper, we introduce a new framework to detect compos-

ites using geometric and photometric constraints from shad-

ows. We show how to extract both geometric and photometric

constraints from a single view of a target scene, and to make

use of them for the digital forgery detection. Methods based

on shadow geometry and shadow photometry are described in

sections 2 and 3. Then we demonstrate the performance of

our methods in section 4, and section 5 concludes this paper.

2. METHOD BASED ON SHADOW GEOMETRY

In this work, we utilize the planar homology [10] that encom-

passes the imaged shadow relationship as shown in Fig. 2

to detect photo composites. Note that the light source is not

necessarily to be at infinity to keep the model by a planar ho-
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Fig. 2. Geometry of a planar homology. A plane, π1, and its

shadow, illuminated by a point light source v and cast on a

ground plane π, are related by a planar homology.

mology, provided that the light source is a point light source,

i.e. all light rays are concurrent.

As shown in Fig. 2, a planar homology is a planar pro-

jective transformation H which has a line l of fixed points,

called the axis, and a distinct fixed point v, not on the axis l,
called the vertex of the homology,

H = I + (μ − 1)
vlT

vT l
, (1)

where μ is the cross ratio that will be discussed later. In our

case, the vertex v is the image of the light source, and the

axis, l, is the image of the intersection between planes π1 and

π. Each point off the axis, e.g. t2, lies on a fixed line t2s2

through v intersecting the axis at i2 and is mapped to another

point s2 on the line. Note that i2 is the intersection in the

image plane, although the light ray t2s2 and the axis, l, are

unlikely to intersect in 3D real world.

One important property of a planar homology is that the

corresponding lines intersect with the axis, e.g. the lines t1t2

and s1s2 intersect at a on l. Another important property of

a planar homology is that the cross ratio, μ, defined by the

vertex, v, the corresponding points, ti and si, and the inter-

section point, ii, is the characteristic invariance of the homol-

ogy, and thus is the same for all corresponding points. For

example, the cross ratios {v, t1; s1, i1} and {v, t2; s2, i2} are

equal. The two constraints can be expressed as

((t2 × t1) × (s2 × s1)) · (f2 × f1) = 0, (2)

{v, t1; s1, i1} = {v, t2; s2, i2}, (3)

where

v = (t2 × s2) × (t1 × s1). (4)

Therefore, we use this two constraints to detect composities

in a nature image. Notice that t1, f1, t2, f2 have to be coplanar

and f1, f2 on the intersection of plane π1 and π. In real world,

vertical objects standing on the ground satisfy this assump-

tion, such as standing people, street lamps, trees and build-

ings. In addition, people usually are interested in inserting a

new actor, which is mostly standing and vertical, into some

target scene.

3. METHOD BASED ON SHADOW PHOTOMETRY

Besides the geometric constraints, the color characteristics of

the shadows are also powerful cues for detecting composites

from one image. In this work, we adopt shading image values

[11] as the color characteristics. The shading image (or il-

lumination image), S(x, y), together with the reflectance im-

age, R(x, y), are called the intrinsic images. Generally, the

observed image, I(x, y), can be modelled as:

I(x, y) = S(x, y)R(x, y). (5)

Therefore, the problem of detecting image composites re-

duces to recovering the shading image, S(x, y), from the

input image I(x, y).
Many approaches [12, 13] have been proposed to derive

illumination image and reflectance image from images or

videos. Theoretically, those decomposed light maps could be

used as shadow mattes in our work. However, the strategy

[12] requires the knowledge about the structure of the sur-

face in the target scene and how it appears when illuminated,

which is not practical for our case since we are provided

only a single view of the target scene, which is inaccessible.

On the other hand, the method [13] is not able to handle the

compression effects such as JPEG effects. Nevertheless, our

challenge is to detect composited objects from given images

or video frames, which are typically compressed.

Our approach takes the advantage of the property that

changes in color between pixels indicate either reflectance

changes or shading effects [12]. In other words, it is unlikely

that significant shading boundaries and reflectance edges oc-

cur at the same point. Therefore, we make the assumption that

every color change along the shadow boundaries, the edges

caused by illumination difference only, is caused by shad-

ing only, i.e. the reflectance image colors across the shad-

ing boundaries should be the same or similar. In practice,

considering the gradual change along the normal direction of

the shadow boundaries, due to either compression effects or

soft shadows, the input image pixel value, Î(x, y), and the re-

flectance image pixel value, R̂(x, y), of each boundary pixel,

(x, y), are estimated as:

Î(x, y)=median{I(m,n) : (m,n) ∈ Ni} (6)

R̂(x, y)=median{I(m,n) : (m,n) ∈ No} (7)

where Ni and No are subsets of the set of neighbor pixels of

(x, y) inside a grid with size M × M , and the subscripts de-

note whether the pixels are inside (Ni) or outside (No) of the

shadows. From Eq. (6, 7), we can compute the shading im-

age value as, Ŝ(x, y) = Î(x, y)/R̂(x, y), for each pixel (x, y)
along the shadow boundaries. For example, the histogram of

estimated Ŝ(x, y) along the boundaries of the shadow patch

(Fig. 3 (b)) is plotted in Fig. 3 (c). Size of the grid (M × M )

should be dependent on the size of the shadow area. As M
grows, the median shadow matte values are becoming more
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Fig. 3. Shadow matte demo. (a) A natural image. (b) The

shadow patch (528×188 pixels) of the red dashed rectangular

region in (a) with “Canny” edges in magenta dotted lines. (c)

The histogram of shadow matte values of (b) in red, green and

blue channels. (d) The curve of median shadow matte value

with respect to different grid size as detailed in text.

and more stable, but finally, too large M exceeds the scope

of shadow, which pollutes the shadow matte value estimation

(Fig. 3 (d)). Generally, high quality images with large shadow

areas are preferred to make precise estimation. However, the

difference of shadow matte values of authentic and compos-

ited shadow areas are still obvious for various M in our ex-

periments. We in this work use M=25 for all experiments,

including Fig. 3 (c).

After the statistics on shadow matte values of shadow

patches, a Bhattacharyya coefficient based similarity compar-

ison is used to identify fake regions.

B(Hα,Hβ) =
N∑

m=1

√
hα,mhβ,m, (8)

where Hx = (hx,1, hx,2, . . . hx,N ) is the histogram of

shadow matte values along the edges of shadow area x.

In our implementation, N is 100. Shadow matte is assumed

approximately constant in one picture with similar lighting

condition, thus, the region with low similarity coefficient is

faked. Provided that the ground surface are partially under

shadow, which are mostly true in real world, our experiments

show that this approximation works well.

4. RESULTS

4.1. Composite Detection Based on Shadow Geometry

The estimation of the planar homology constraints requires

three pairs of points. These six points are manually selected as

R4R5R6R1 R2R3

Fig. 4. Composite detection based on shadow geometry. Top
row: Two nature images with composited regions. Middle
row: The corresponding lines that involve composited re-

gions (R1 and R6) don’t intersect on the axis, i.e. disobey-

ing the constraint in Eq. (2). In addition, they dissatisfy the

characteristic invariance constraint in Eq. (3) (see Table 1).

Bottom row: The imaged shadow relationship of authentic

objects can be modeled by a planar homology. Black squares,

crosses and circles denote the locations of t, f and s in Fig. 2

respectively.

shown in Fig. 4 in black squares, crosses and circles. First, we

check the constraint in Eq. (2). The two corresponding lines

of the two shadows in Fig. 4 (Row 2) don’t intersect on the

axis, while those in Row 3 do. Take Fig. 4 (left) for example,

the first constraint shows that region 1 is not consistent with

region 2, but regions 2 and 3 are. We therefore suspect region

1 to be faked. Table 1 shows the cross ratios between region

pairs in Fig. 4. Without surprise, the cross ratios that involve

fake regions 1 and 6 are different (around 21% on average),

while the cross ratios involve all authentic regions (regions

2∼5) are within the relative difference of 1%. Note that cross

ratios of the same shadow are different in different shadow

pairs, as different pair defines a different plane π1 in Fig. 2,

and thus results in a different location of i.

4.2. Composite Detection Based on Shadow Photometry

Shadow photometry constraints are especially useful in cases

where it is not easy to estimate the planar homology (e.g.

Fig. 1), and where the planar homology constraints are ap-
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Fig. 5. Composite detection based on shadow photometry.

(a) Two natural images with composited regions. (b)∼(d)

Shadow matte values in RGB channels of the different regions

marked in black dashed rectangles in (a). By the analysis of

shadow matte values of the shadow regions, the regions la-

beled as R1 are clearly faked.

Table 1. Cross ratios of planar homologies in Fig. 4.

Region A Region B μA μB Diff Ratio

R1 R2 0.1741 0.1231 29.2589%

R2 R3 0.1587 0.1573 0.8794%

R1 R3 0.4454 0.4966 11.5145%

R4 R5 0.6298 0.6352 0.8647%

R4 R6 0.4473 0.3384 24.3526%

R5 R6 0.3237 0.2625 18.9191%

Table 2. Bhattacharyya coefficients for shadow regions.

Figure B(R1,R2) B(R1,R3) B(R2,R3)

Fig. 1 0.0143 N/A N/A

Fig. 5 Upper 0.0440 0.0823 0.7555

Fig. 5 Bottom 0.0035 0.0023 0.7688

proximately satisfied, e.g. the two images in Fig. 5. The

power of constraints from shadow photometry for the detec-

tion of composites is demonstrated in Fig. 5. Obviously, the

region labeled as R1 is faked by a glance at the histograms

of shadow matte plots in Fig. 5 (right). These observations

are also consistent with the Bhattacharyya coefficient based

similarity measurements as shown in Table 2.

5. CONCLUSION

This paper presents a new framework for detecting image

composites based on estimated shadow geometry and pho-

tometry. This method is especially useful when the scene is a

wide area and the calibration objects such as a person’s eyes

are not measurable. The experimental results demonstrate

that this method is efficient and can be applied to a variety

of target scenes. As a pragmatic and flexible framework, it is

also simple and easy to implement.
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