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Hyperlink-Aware Object Retrieval
Wei Zhang, Chong-Wah Ngo, and Xiaochun Cao

Abstract— In this paper, we address the problem of object
retrieval by hyperlinking the reference data set at subimage
level. One of the main challenges in object retrieval involves
small objects on cluttered backgrounds, where the similarity
between the querying object and a relevant image can be
heavily affected by the background. To address this problem,
we propose an efficient object retrieval technique by hyperlinking
the visual entities among the reference data set. In particular,
a two-step framework is proposed: subimage-level hyperlinking
and hyperlink-aware reranking. For hyperlinking, we propose a
scalable object mining technique using Thread-of-Features, which
is designed for mining subimage-level objects. For reranking,
the initial search results are reranked with a hyperlink-aware
transition matrix encoding subimage-level connectivity. Through
this framework, small objects can be retrieved effectively. More-
over, our method introduces only a tiny computation overhead
to online processing, due to the sparse transition matrix. The
proposed technique is featured by the novel perspective (object
hyperlinking) for visual search, as well as the object hyperlinking
technique. We demonstrate the effectiveness and efficiency of
our hyperlinking and retrieval methods by experimenting upon
several object-retrieval data sets.

Index Terms— Object retrieval, hyperlinking, re-ranking,
object mining.

I. INTRODUCTION

IN THE context of Web search, a hyperlink refers to a
“pointer” between two web pages, where the source page

has an HTTP link that references the destination page and is
associated with some anchor text. While hyperlink analysis is
known to play a critical role in Web search, the creation and
exploitation of hyperlinks for visual search remains a topic
seldom studied. The ability to cross-reference different visual
entities (i.e., objects/locations/persons) in an image or video
collection, for example, can greatly facilitate applications
such as advertising, browsing and retrieval. Despite these
advantages, manually creating hyperlinks in the visual domain
is far less convenient and motivated, than creating hyperlinks
among web pages. This paper studies the problem of object
retrieval via automatic hyperlinking of visual entities. Unlike
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existing works (e.g., [1], [2]) that operate on frame-level links,
we explore more general hyperlinks connecting visual entities
with arbitrary sizes.

In this paper, the objects under consideration are assumed
rigid, each with a well-defined boundary and a center [3].
Examples include buildings and logos, as opposed to
amorphous background. Retrieving objects efficiently from
a large-scale dataset is a feature highly demanded with the
convergence of mobile computing and e-commerce. The pop-
ularity of e-commerce gives rise to the needs for retrieving
small objects (e.g., products, logos, locations). At the same
time, smartphones provide the right tool for precisely defining
the object under query. Users can easily formulate a query
using the portable camera and touch screen. Undoubtedly,
object retrieval will play an indispensable role in this retrieval
paradigm.

Despite the recent advancement of Deep Convolutional
Neural Network features (DCNN) [4]–[6], state-of-the-art
object retrieval techniques are mostly based on the Bag-of-
Visual-Words (BoW) model [7], [8] and local features [9].
Combined with inverted file, BoW achieves a good trade-
off between efficiency and effectiveness. Usually, reference
images are ranked according to their cosine similarity to the
query: rel(Q, Ri ) = Q·Ri

‖Q‖‖Ri‖ , where Q and Ri represent
the BoW vectors of the querying object and the i -th refer-
ence image, respectively. Intuitively, the numerator counts the
common parts between the query and reference images, while
the denominator normalizes the score. In the context of object
retrieval, the query is usually a small Region of Interest (ROI),
and the targets on reference images are also likely to be
small and have different backgrounds. In this paper, we regard
an object as small if it covers less than 10% of the area
on the image. Taking TRECVID dataset (Section V-A) for
example, 77% of the query objects are small. Apparently,
‖Ri‖ “over-norms” the score of small objects on the reference
image by including features on the background. Due to this
“over-norm” effect, retrieving small objects is challenging in
practice. However, by using object-level hyperlinks, we show
that the effect can be bypassed during search re-ranking.

Another research problem for object retrieval lies in the
speed efficiency. A quick online response is extremely impor-
tant to users in real-world applications. We refer to offline
(online) processing as the computational process involved
before (after) observing the query. In the past decade, most
techniques have focused on the online part, e.g., query expan-
sion [10], spatial verification [8], and multiple assignment of
visual words [11]. However, these methods inevitably slow
down the online response by introducing extra computation.
Studies on offline processing are limited to indexing tech-
niques [7], [12] and feature augmentation [2], [13]. In general,
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Fig. 1. The proposed framework for hyperlink-aware object retrieval.
First, subimage-level hyperlinks are constructed on the reference dataset via
offline mining (left). Then the initial retrieval results are re-ranked with the
hyperlinks (right).

optimizing the online process is suitable for improving the
retrieval precision because the query is already known. In con-
trast, the query remains unknown for offline processing, and
arbitrary queries must be considered during offline processing.
However, optimizing the offline process is better for reducing
the online response time. Parsing the dataset offline to make
online calculations more efficient is a general trend in big data
computation. In this paper, we specifically address the effi-
ciency problem by performing offline mining and by indexing
frequent visual entities.

To address these problems, we propose an object retrieval
technique via hyperlinking, as shown in Fig. 1. During offline
processing, object-level hyperlinks are constructed by mining
sub-image level objects from the reference set. Then, dur-
ing online retrieval, the initial ranklist is re-ranked by the
hyperlink-aware re-ranking. It is worth noting that the term
“hyperlinking”, as used here, is slightly different from Web
hyperlinking. Web hyperlinking usually links an anchor text
in a webpage to another webpage, whereas our hyperlinking
connects several instances of the same visual entity across
multiple images (Fig. 4). In this work, the object mining
technique, which is to identify frequently appearing objects in
a dataset, is adopted for hyperlinking objects among reference
images. We first propose an object mining method and then
study proper ways of re-ranking using the resulting hyperlinks.

For the “over-norm” problem, our strategy leverages the
hyperlinks constructed via object mining, which establishes
subimage-level rather than image-level links. Although the
initial retrieval results suffer from the over-norm problem,
the subimage-level hyperlinks address this problem by exclud-
ing cluttered backgrounds from hyperlinking, as well as by
re-ranking using the subimage-level hyperlinks. Therefore,
linking objects is far more important than linking images
because in most cases, similar images do not suffer from
the over-norm problem. Toward this end, we propose a
scalable object mining method by exploiting the Thread of
Features (ToF). Specifically, ToF is a compact representation
that links consistent features across images and is extracted
to reduce noise, discover objects, and speed up processing.

More importantly, small objects can be easily discovered by
exploiting correlated ToFs.

To address the efficiency problem, we exploit offline
processing and introduce only minor computation overhead
into the online retrieval process. Because the major part of the
computation is completed offline, our solution is more efficient
by its very nature. At the time of online retrieval, we re-
rank the initial results through Random Walk [14], where a
hyperlink-aware transition matrix is constructed for subimage-
level connectivity. Due to the sparsity of the transition matrix,
our re-ranking method is more efficient than traditional visual-
based Random Walk such as [15], which operates on a dense
transition matrix encoded with pairwise similarities of the
top-K retrieved images. Moreover, existing visual re-ranking
considers only the top-ranked shortlist. Images ranked beyond
the shortlist are omitted during re-ranking. As a more general
approach, hyperlink-aware re-ranking does not suffer from this
limitation. To be precise, images that are ranked lower due to
the over-norm effect can be upgraded to higher ranks with the
aid of offline-mined hyperlinks.

This paper addresses the problem of object retrieval using
an offline hyperlinking process. The hyperlinking step mines
objects effectively and efficiently. Then, our retrieval step
utilizes the offline mined knowledge to retrieve small objects
that typically suffer from the “over-norm” problem. The main
contributions of this paper are summarized as follows:

• We address the retrieval problem via offline hyperlinking,
which saves online computation and alleviates the over-
norm problem. Using the knowledge mined offline, our
solution is capable of dealing with the over-norm prob-
lem, and of re-ranking results beyond the shortlist.

• We propose an object hyperlinking method that automat-
ically mines frequently appearing objects in a dataset.
Compared to existing methods, our method mines small
objects more effectively and efficiently.

This manuscript is built upon our previous conference paper
[16] on object mining. In this paper, we investigate a different
problem of object retrieval by studying proper re-ranking
strategies using hyperlinks constructed offline. In addition,
this paper includes more experiments and analysis to evaluate
the performance of our object retrieval method. The rest of
the paper is organized as follows: Section II reviews related
works; Section III presents our algorithm for hyperlinking,
and Section IV discusses the hyperlink-aware re-ranking;
Section V evaluates the hyperlinking and re-ranking methods
on different datasets; and Section VI concludes this paper.

II. RELATED WORKS

Because our study explores the potential value of hyper-
linking for object retrieval, it is highly related to both object
mining and retrieval. It is worth noting that for the purpose of
object retrieval, we are particularly interested in hyperlinking
frequent subimage-level objects, other than frequent images
such as in [17] and [18].

A. Object Mining

Most previous studies only operate on small-scale datasets.
Early studies on Common Pattern Discovery [19]–[21] model
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this task as an optimization problem. These methods are com-
putationally expensive, and are therefore limited to only hun-
dreds of images. Furthermore, most common objects in these
works are the saliency [22], [23] of each single image, which
makes the problem easier. Frequent Itemset Mining (FIM) was
initially used to find sets of products bought together (e.g.,
beer and diaper). Quack [24] introduced FIM in visual mining.
However, because of the computationally expensive support-
counting, in practice, this method can address only thousands
of images. Sivic and Zisserman [25] extracts key objects
and characters from a movie by clustering locally grouped
features. However, this method is still slow due to its pairwise
similarity evaluation. Moreover, it can only discover objects
with predefined sizes.

Only a few methods are capable of scaling up for large
datasets. Letessier et al. [26] used Random Maximum Margin
Hashing to generate a prior distribution and then adaptively
sampled and verified frequent objects. Pineda et al. [27]
extracted objects by clustering visual words, where each
visual word was represented as a set of images containing
the visual word. This method is effective in small datasets,
but its performance decays quickly as the number of images
increases. Geometric min-Hash (GmH) [28] extended min-
Hash [29] by considering the dependency among visual words.
For each sketch, it computes the first hash key as standard min-
Hash does, but then chooses secondary hash values within a
local proximity of the first key. This method improves the col-
lision probability for small objects. However, this performance
boosting occurs only when the first key repeats, which is still
difficult to achieve for small objects.

B. Object Retrieval

Object retrieval has been a topic of research for
almost a decade. Previous studies have focused primarily
on improving feature representation [9], [30]–[32], feature
matching [2], [33], [34], and spatial verification [8], [35], [36].

Until quite recently, most works are designed for gen-
eral image retrieval. Only a few works formally study the
object retrieval problem. Recent works in TRECVID Instance
Search [37] address the small object problem on both query
and reference images. Ran [38] partitions each reference image
into segments using Selective Search [39], where each segment
is indexed and retrieved independently. Thus, the segments
are matched directly to the query rather than to the full
image. Obviously this method relies heavily on the quality
of the partitioning mechanism. On the query side, Zhang and
Ngo [36] proposed to weight the background context for query
modeling, which increases the information quantity for small
query objects.

There are also a few object retrieval methods that tweak
the reference dataset. Query expansion [10], [40] augments
the query using the highest-ranked retrieved images. How-
ever, doing this introduces considerable additional online
computation because all computation can be conducted only
after analyzing the query. Database-side feature augmenta-
tion [13] augments each image in the reference set with
features from similar images. Spatial database-side feature

TABLE I

KEY NOTATIONS USED IN SECTION III

augmentation (SPAUG) [2] further improves [13] by restricting
feature augmentation to spatially verified image areas. All
these methods require a matching graph [17], which can be
regarded as image-level hyperlinking. However, this matching
graph is computationally expensive to construct, and only
favors similar images rather than sub-image objects.

Recent benchmark evaluations such as MediaEval [41] and
TRECVID [37] have included the hyperlinking task. These
evaluations consider a variety of entities such as events, con-
cepts, people and name entities for hyperlinking large video
archives. Textual cues, especially speech transcripts, play a
crucial role in linking these entities. In contrast to our work,
the focus is to recommend hyperlinked video snippets given a
query clip rather than on object retrieval. This paper considers
specifically visual-level entity linking and the exploitation of
hyperlinks for online object retrieval.

III. VISUAL HYPERLINKING

The fundamental problem underlying hyperlinking lies in
mining frequent objects, such that links can be established
by connecting common objects across images. Different from
mining frequent images, the number of object hypotheses
is several magnitudes large than images, which dramatically
increases the computational cost. This section presents a
bottom-up approach, starting from threading local features
across images (Section III-A), followed by clustering the
threads into objects for hyperlinking (Section III-B), and end-
ing with a discussion of practical concerns such as scalability
and robustness for online retrieval (Section III-C). Table I
summarizes the key notations used in this section.

A. ToF Extraction

Thread of features (ToF) is defined as a set of consistent
patches threaded across multiple images. In our implementa-
tion, each ToF is represented as a set composed of threaded
images each of which is assigned a unique number. The con-
sistency comes from visually similar appearance and spatially
coherent neighborhood configuration among local features
observed in different images. Basically, ToF serves as an ele-
mentary component that links visual objects in image or video
collections. In principle, ToFs should be (1) compact to only
link potential features from objects; (2) complete to cover as
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Fig. 2. Left: The distribution of Hamming distances among features extracted
from 10k Flickr images. The curve Bin(32, 0.5) is overlaid as red dashed line.
Right: the number of evaluations (# eval) with respect to different Hamming
signature threshold (ht). The red dashed line indicates the case without using
Hamming code.

many objects as possible; (3) efficient to extract and thus be
scalable on large datasets.

ToF extraction starts by quantizing SIFT features into
visual words. Generally, when comparing two images, features
quantized to the same visual words can be considered to be
matched. Nevertheless, such matching is not necessarily robust
for feature threading due to quantization error. Therefore,
we also consider the neighboring points around each SIFT
feature F to improve matching robustness. Let F be a central
feature with l nearest neighboring features that can be consid-
ered to augment F as a small local patch. These neighboring
features are selected within a small region centered at F ,
and with the similar scale of F . Therefore, a local patch is
composed of a central feature F and a set of l neighboring
features. Threading is performed by evaluating the similarities
of patches across images. Basically, two patches are consid-
ered to be matched when they share some fraction of common
visual words. Let w be the size of the visual vocabulary.
Furthermore, consider a dataset with N images, each of
which has an average of n local features. The number of
similarity evaluations required by [25] for threading amounts
to ( Nn

w )2 × w = (Nn)2/w, which becomes computationally
expensive for a large dataset.

To speed up this process, we embed each central feature in
a patch with a short binary Hamming signature [42] for early
pruning. The signature is computed by randomly projecting
the SIFT features to a lower dimensional space and coding
them into binary signatures. Threading is conducted by only
evaluating only those patches that share the same visual word
and where the Hamming distance between their signatures is
smaller than a specified threshold ht . Consequently, the total
number of evaluations is further reduced to:

(
Nn

w
× CDF(ht))2 × w = (Nn)2

w
× CDF2(ht), (1)

where CDF(ht) is the Cumulative Distribution Function of
the Hamming distance, which could be approximated as a
Binomial distribution Bin(K , 0.5) for a K -bits Hamming sig-
nature. We use K = 32-bits Hamming codes throughout this
paper. Fig. 2 (left) plots the distribution of Hamming distances
in 10k random Flickr images. As shown, the probability mass
function of Bin(32, 0.5) roughly fits the actual distribution.
According to Eq. 1, threading involves only a fraction of
CDF2(ht) evaluations. For a commonly used threshold, e.g.,

Fig. 3. Example ToFs on six images with three objects. Clustered ToFs
are highlighted using the same color as follows: Blue: (I1, I2, I3, I4) - Base;
Green: (I1, I2, I5) - Quick; Yellow: (I3, I4, I6) - TNT.

ht = 10∼12, this fraction is around (
∑10∼12

i=0 PMF(i))2 =
0.06%∼1.16%, where PMF stands for the probability mass
function. Fig. 2 (right) plots the actual number of evaluations
when mining on the 10k dataset.

ToF extraction can be efficiently implemented with an
inverted-file index. Specifically, each quantized SIFT feature
in an image is indexed in an inverted index together with
its Hamming signature. In addition, the visual word IDs of
the l neighboring features are also indexed along with each
feature. ToFs are extracted by traversing the posting list of
every visual word in the index. With the help of the Hamming
signature, we can efficiently extract several ToFs from each
posting list by traversing the inverted file structure. Note that
with the inclusion of the l neighboring features, the inverted
index built for hyperlinking cannot be kept in memory as in
visual search. However, in the context of visual hyperlinking,
due to the independence of the posting lists, we sequentially
load and process each posting list separately at the time of
ToF extraction.

B. Object Mining

Because a ToF links images that share consistent patches,
we can also represent a ToF as a set of linked images. With this
representation, grouping similar ToFs is equivalent to finding
the co-occurred patches observed in different images. There-
fore, the goal of mining here is to cluster the ToFs such that
each cluster corresponds to a candidate frequent object shared
among different images. We employ min-Hash (mH) [29],
which is a randomized algorithm for efficient estimation of set
similarity, for ToF clustering. The algorithm hashes the ToF,
represented as a set of images, to a minimal index according
to a random permutation. The collision probability between
two sets approximates their Jaccard coefficient, presuming that
mH uses a large number of hash functions. Furthermore, mH
groups s number of hashing keys as a s-tuple called sketch.
The probability that two ToFs T1 and T2 having at least one
sketch collision is given by:

PC (T1, T2) = 1 − (1 − sim(T1, T2)
s)k . (2)

By mH, ideally the set of ToFs that collide in the hash tables
ideally refers to the set of images sharing similar group of
patches. Fig. 3 shows a toy example of six images with three
common objects among them. Because each ToF is represented
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Fig. 4. Direct involving all hyperlinks associated with query retrieved image
is risky. Although query Q retrieves I1 as true response, I2 and I3, involved
by the hyperlink in yellow, should not be considered in re-ranking.

as a set of image IDs,1 it is easy to see that these ToFs can
be readily grouped into clusters, each of which corresponds
to an object by Jaccard similarity. In other words, the union
set of images in a cluster tells the potential object holders that
can be hyperlinked as sharing a common object. In practice,
to avoid false links due to feature noises during the ToF
extraction, the following heuristics to restrict the lengths of
ToFs and the number of hyperlinks are adopted. First, a small
value of the Hamming distance threshold in the range of
ht = 8 ∼ 10 (see Eq. 1) and a large number of common
visual words, t = 3 ∼ 5, are expected when threading
patches into a ToF. Second, for a cluster of ToFs, only those
images that are linked by most (≥80% in our implementation)
of the ToFs are considered for hyperlinking, which can be
easily implemented with cluster voting. As false links between
images can propagate noises resulting in adverse effects for
applications such as search re-ranking, these two practical
concerns are crucial to keep the noise level in a minimum level.

In our context, a hyperlink is defined as a link connecting
instances across the images as voted by the clustered ToFs. It is
worth noting that the bounding boxes of common objects could
be proposed for images along the hyperlink, given that the ToF
cluster actually captures the location of co-occurred patches.
For small objects such as logos and signboards, the bound-
ing boxes may only enclose only a small fraction of the
images (Fig. 9). At the other extreme, for hyperlinks between
two near-duplicate images, the bounding boxes may simply
enclose the entire images. In practice, most bounding boxes
only partially align with the actual object (e.g., the Presidential
logo, and the Parking sign board in Fig. 9).

C. Discussion

One critical issue governing the success of hyperlinking for
object retrieval is object scale. Generally speaking, the ability
of hyperlinking smaller-scale objects is more valuable than
hyperlinking large ones, because the latter (e.g., near-duplicate
images, landmark buildings) are not always a problem for
visual search. Min-Hash (mH) normally operates on the whole

1For example, the three threads in blue can all be represented as
{I1, I2, I3, I4}

Fig. 5. Illustration for query-expanded re-ranking. Left: index structure of
the hyperlinks. Right: re-ranking with the offline constructed hyperlinks.

image level [18]. To guarantee the success rate for mining
small scale objects, mH needs a fairly large number of hash
tables. In this subsection, we discuss the reason why the ToF
(instead of the image itself) is adopted as the unit of hashing,
and how small scale objects can still be mined even using
fewer numbers of hashing tables.

Let’s first contrast hashing using images and ToFs as units.
Assume a dataset with N random images, each of which
has n local features on average, and a visual vocabulary
V = {v1, v2, ..., vw} of size w for quantization. Furthermore,
assume that local features in this dataset are quantized to each
visual word with equal chance. For a pair of random images
IA and IB , let X1, X2, ..., Xw be a list of indicator random
variables with

Xi =
{

1, if vi ∈ IA & vi ∈ IB,

0, otherwise.
(3)

That is, Xi = 1 only if both images have the i -th visual
word. Since each Xi is identical and independent to each other,
the expected number of common visual words m is given by:

m = E[
w∑

i=1

Xi ] = w × E[X1] = w(1 − (
w − 1

w
)n)2. (4)

Let x = 1/w. Then, the term (w−1
w )n = (1 − x)n can be

expanded with Taylor expansion near x = 0 as 1−nx +O(x2).
This linear approximation for m = n2/w is already accurate
enough, since x approaches 0 for a large vocabulary. Then the
Jaccard similarity between a random pair of images can be
written as:

ε = |IA ∩ IB |
|IA ∪ IB | = m

2n − m
≈ n

2w − n
. (5)

This ε is important since it estimates the average similarity
for random image pairs, which can be used to threshold false
positives. For each

(N
2

)
pairs of images, the number of image

pairs found in k hash tables follows the Binomial distribution
Bin(k, εs). As a result, the expected number of random image
pairs mined from the whole dataset is:

RC =
(

N

2

)

× k × εs . (6)

Take Oxford105k used in [18] for example, where
N = 104, 844, n = 2, 805, w = 217, k = 512, and s = 3.
According to Eq. 6, RC = 3.34×106, which roughly matches
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Fig. 6. Example query images from BelgaLogos (top) and TRECVID (bottom) dataset. The querying objects are outlined with magenta. Since most queries
are in small size, this figure is best viewed in color.

the number reported in [18]: 38.4 × N = 4.02 × 106, where
both random and true collisions are counted. That is to say,
in addition to true image pairs, more than 3 million random
pairs are expected to be extracted from a 100k dataset. More-
over, because RC grows quadratically in N , the scalability of
mining in large datasets is also an issue.

Consider a set of images that share a small object, where
m	n and ε goes to zero by Eq. 5. Thus, hashing images can
hardly find the object. In contrast, hashing ToFs does not suffer
from this problem, because the probability of ToF collision
is independent from object scale. Furthermore, the ToF is
relatively “clean” since any surrounding features not relevant
to ToF should have been excluded during ToF extraction.
Indeed, the only factor that matters for collision, indeed,
is the similarity among the ToFs composing of an object. It is
obvious that, due to this compact and clean representation,
the similarities among ToFs composing an object will be much
higher than the similarities among the images that share the
object. According to Eq. 2, to ensure a high probability of
collision PC > α, we need at least:

k > log1−sims (1 − α) (7)

hash tables. In other words, far fewer k hash tables are needed
with a slightly higher sim, since log1−sims (1 − α) is quite
sensitive around the common value sim ≈ 0.02. This property
is critically useful for object mining, since a large amount of
computation can be avoided by using fewer hash tables.

IV. HYPERLINK-AWARE RE-RANKING

With visual hyperlinks, an image collection can be visual-
ized as a graph with the images as nodes and the hyperlinks
as edges. Algorithms such as Random Walk [15] can be
applied to assign each image a static score indicating its

representativeness. For example, an image containing objects
that are also found in many other images in a collection is
likely to receive a higher score. For online retrieval, these
hyperlinks can also be leveraged for re-ranking an initial set
of retrieved images using Random Walk. Specifically, the set
of initial retrieved images, denoted as IR = [I1, I2, ..., IK ], can
be expanded even for images (denoted as IE ) that may not have
been initially retrieved but that are hyperlinked by the images
in IR . In this way, a graph composed of I∗ = IR ∪ IE can
be established for re-ranking. Let x0 be the vector encoding
the initial retrieval scores of images. Then Random Walk is
conducted by

xT
n+1 = αxT

n P + (1 − α)xT
0 , (8)

where xn is the score vector after the n-th iteration, and
P is a transition matrix where each element pi, j encodes
the probability of traversing from image i to j through the
hyperlinks between them. By the Power Method [43], Eq. 8
is guaranteed to converge after a finite number of iterations.

Nevertheless, this strategy is risky as the hyperlinks could
include images or objects not relevant to the query, not to
mention false hyperlinks that could introduce noises during
re-ranking. There are cases where a retrieved image may
have more than one hyperlink to other images, or a hyperlink
associated with the retrieved image may not feature the query
object. Fig. 4 shows an example where the query Q retrieves
image I1, while two other images I2 and I3 hyperlinked by
I1 are included for re-ranking even though that they are
irrelevant to Q. In this chapter, we propose two approaches to
address this problem from the spatial and visual perspectives,
respectively. Here, the central problem here is to verify the
relevancy between Q and the established hyperlinks. The first
approach (Section IV-A) estimates the spatial extent of the
object on reference images, and considers only hyperlinks
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Fig. 7. Hyperlinking performance on Oxford105k dataset. Left: F-measure. Mid: Precision. Right: Recall.

that spatially align with the estimated area. The second
approach (Section IV-B) directly considers hyperlinks where
the underlying objects are visually similar to the query.

A. Localized Re-Ranking

Since this approach explicitly considers the spatial extent of
the hyperlinks, we name this approach as localized re-ranking.
For a reference image Ii in IR , a hyperlink H associated with
Ii can be spatially cast onto Ii by fitting a normal distribution
N(μh , δ2

h), where μh and δ2
h indicate the mean and variance of

the spatial locations of the ToFs compositing H, respectively.
Similarly, the query Q can also be casted onto Ii by tracking
the matching locations between Q and Ii . Another normal
distribution N(μq , δ2

q) can be fitted to the matched points
on Ii . Take Fig. 4 as an example, the hyperlink in yellow
is spatially casted to I1 as shown by the yellow box of I1, and
Q is mapped onto I1 as shown by the green box of I1. Using
this strategy, we spatially verify the relevancy between H and
Q with a Z-test between the two distributions N(μh , δ2

h) and
N(μq , δ2

q):

z = μq − μh
√

δ2
q + δ2

h

. (9)

In our implementation, z values less than 2.33 are accepted as
relevant, which corresponds to a 1% significance level.

The main challenge of this strategy is to precisely estimate
N(μh , δ2

h) and N(μq , δ2
q). However, in practice, precisely

locating an object by fitting a 2D normal distribution using
only a few matching points is difficult. Typically, an object
has fewer than 20 such points and they are sparsely distributed
for an object. Moreover, erroneous hyperlinks introduced by
false positive images in IR will result in adverse effect while
re-ranking.

B. Query-Expanded Hyperlinking

While localized re-ranking ideally excludes irrelevant hyper-
links via spatial overlap checking, false matches between
the query Q and IR can still introduce irrelevant hyperlinks.
An alternative and indeed more feasible way is by retriev-
ing from the mined hyperlinks whose underlying common
objects are visually similar to Q, and including the involved
images for re-ranking. This strategy is more reliable, since it
directly considers the visual similarity between the query and
hyperlinks.

Fig. 5 shows the detailed framework for re-ranking based
on query-expanded hyperlinking. Two inverted indexes are

constructed for fast retrieval of images and hyperlinks. The
first index, for reference images, refers to the data structure
where each visual word points to a posting list of images
that contain the visual word. This structure facilitates fast
retrieval of images that have at least one common visual word
in common with Q. The second index keeps offline-mined
hyperlinks, where each hyperlink is represented as a BoW
vector depicting the underlying common object. The detailed
structured for this index is shown at the left side of Fig. 5,
where each visual word points to a posting list of hyperlinks
that include the visual word. Each entry in the index includes
the hyperlink ID and frequency of the visual word. During
online retrieval, the sets of images IR and hyperlinks H that
are relevant to the query can be rapidly retrieved by traversing
only a few posting lists in both inverted indexes. Denoting IE

as the set of images connected by hyperlinks in H, Random
Walk (Eq. 8) can be conducted on the image set I∗ = IR ∪ IE .
It is important to note that the transition probability matrix P
can be constructed based on H, i.e., Pi, j equals the number
of hyperlinks connecting the images Ii and I j . It is also worth
noting that P could be very sparse if |IE | 	 |IR |, which is
usually true since hyperlinks only connect only images that
share a set of ToFs. As a result, re-ranking can be extremely
efficient in practice.

V. EXPERIMENTS

In this section, we conduct experiments for evaluating
the performances of visual hyperlinking (Section V-B) and
search re-ranking (Section V-C). As there is no benchmark
available for visual hyperlinking, we first fully annotate
a dataset (Oxford5k, Section V-A) to evaluate visual
hyperlinking.

A. Datasets and Implementation Details

Three datasets (Oxford, BelgaLogos, and TRECVID) are
used for the experiments. The Oxford5k dataset, which con-
tains our hand-annotated hyperlinks for more than 350 objects,
is used for the hyperlinking evaluation. The other two datasets,
which include objects queries in the image and video domains,
respectively, are used for re-ranking evaluation.

1) Oxford: The Oxford5k dataset has 5,062 Flickr images
with 11 landmarks manually labeled as the ground-truth.
Since Oxford5k contains many more common objects than the
11 officially labeled objects, we further annotated the dataset,
resulting in 364 clusters of objects involving 2,369 images.
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TABLE II

QUERY TOPICS FOR TRECVID’13 & 14

The full set of annotations has been made publicly avail-
able.2 For scalability test, the Oxford5k dataset is then mixed
together with the Oxford100k dataset with 99,782 Flickr
images. We name this combined dataset as Oxford105k. Note
that the additional Oxford100k images are not annotated;
instead, they are treated as distracting images during the
evaluation.

BelgaLogos is composed of 10,000 images with 26 query
logos [44]. The dataset is regarded as a standard benchmark
for logo retrieval in natural images. Fig. 6 (top) shows several
example queries.

TRECVID INS is an instance search (INS) [37] dataset
aimed at searching for objects/persons/locations from large
video collection. The dataset is composed of 470k video
clips (amount to 640k keyframes) extracted from the BBC TV
series “EastEnder” - Programme material © BBC. We conduct
experiments using 57 query topics released by TRECVID in
years of 2013 (denoted as TV13) and 2014 (TV14), as listed
in Table II. Each query topic is accompanied by several query
images, where each is associated with a mask specifying the
object instance being queried. Fig. 6 (bottom) shows example
queries from TV13. In general, this dataset is challenging due
to the large visual variations among different instances of the
same objects.

2) Implementation Details: A hierarchical vocabulary [12]
with one million leaf nodes (ω = 106) is trained on 100k
randomly crawled Flickr images. Two patches of different
images are hyperlinked if at least three (t = 3) out of
ten (l = 10) neighbor features share the same visual word. The
number of Hamming bits (K ) is set to 32, and the threshold

2[Online] http://vireo.cs.cityu.edu.hk/gt_clusters.oxford5k

Fig. 8. Example mining results from Oxford105k dataset, using our method
ToF. Top 3 rows: example objects in ground-truth set. Images with green-
solid border are in the “junk” set of Oxford dataset, while red-dashed border
indicates false positives. Bottom 4 rows: example objects outside ground-truth
set. The last row is a false cluster.

TABLE III

THE PERFORMANCE (F-MEASURE) ON THE SUBSET OF Small
OBJECTS IN OXFORD DATASET. A MID-LEVEL VALUE

OF k = 300 (1∼500 EVALUATED IN FIG. 7) IS ADOPTED

FOR ALL METHODS

for Hamming distance (ht) is 10. For min-Hash, the number
of hash tables (k) is 512, with sketch size (s) being set to 3.
For re-ranking, the parameter values are α = 0.3 in Eq. 8 and
z > 2.33 in Eq. 9.

B. Hyperlinking

We compare three types of features for hyperlinking: ToF
(our method), VW (visual words) and CoVW (co-occurring
VW [27]). For VW, each image is represented as a bag-of-
words vector, while for CoVW each visual word is represented
as bag-of-images. All these features (ToF, VW, and CoVW)
use min-Hash (mH) [29] for feature hashing. Additionally,
we also test the Geometric min-Hash (GmH) on VW (denoted
as VW-GmH) because of its improved performance as reported
in [28]. In the experiment, the sketch size is set to s = 3
for all methods. The performance is evaluated based on the
F-measure, which is defined as the harmonic mean of precision
and recall. Concretely, precision is defined as the fraction of
correct pairwise hyperlinks among all the established hyper-
links, and recall is defined as the fraction of ground-truth
hyperlinks correctly established.

Fig 7 shows the performances of the various approaches on
the Oxford105k dataset. Note that ToF performs consistently
better in terms of precision and recall across all the settings.
Even with only 50 hash tables, ToF outperforms VW with
500 hash tables. When mining small-sized objects, larger
number of hash tables is expected for VW. However, as VW
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Fig. 9. Example hyperlinks mined from the BelgaLogos (left) and TRECVID (bottom) dataset. Three images in a row correspond to a hyperlink outlined
with the estimated bounding boxes. The threads of visual words across rectangles are colored differently.

TABLE IV

THE RUNNING TIME COMPARISON FOR HYPERLINKING ON

OXFORD DATASET. FOR ToF, THE TOTAL TIME (C)
IS DECOMPOSED TO FEATURE THREADING (A) AND

HASHING (B) AS: A + B = C. m FOR MINUTE

TABLE V

PERFORMANCE (mAP) COMPARISON FOR
DIFFERENT RETRIEVAL METHODS

is vulnerable to random collision especially on large dataset,
increasing the number of hash tables only results in marginal
improvement. The GmH version of VW reduces the effect
of random collision by careful selection of secondary hash
keys. While large improvement is attained, its performance
is still lower than that of ToF. CoVW basically shows the
worst performance due to noisy bag-of-images representation.
The approach is particularly sensitive to the large numbers
of distracting images in the dataset, which introduces false
images into the bag-of-images representation and subsequently
results in erroneous similarity measures of words during
hashing.

1) Performance on Small Objects: Considering the impor-
tance of hyperlinking small objects for object retrieval, we fur-
ther investigate the performance of small objects hyperlinking
on the Oxford dataset. To separate small objects from large
ones, we first calculate the average Jaccard similarity for
pairwise images in each ground-truth cluster, and then cut the
object clusters into halves based on those similarities. Object
clusters with similarities below 50% are regarded as small.
Table III presents the detailed performance on the small subset.
On the Oxford5k dataset, GmH version of VW shows better
performance than mH. Although CoVW attains reasonably
good result on the Oxford5k, its performance does not scale

up as the number of images increases, and its F1 score drops
significantly on the large Oxford105k dataset. Overall, ToF
copes better with the size of the dataset and exhibits the
best performances when linking small objects. Figure 8 shows
examples of the objects hyperlinked by ToF on the Oxford105k
dataset. In addition to the objects labeled in the ground-truth
set (the top three rows), ToF is able to mine unlabeled objects
from the Oxford100k dataset (see the bottom four rows).
As observed, some of the patterns labeled as “junk” (less
than 25% of the region is visible) in [8] are extracted by ToF,
demonstrating its ability to link small objects. A falsely linked
object due to a repeated pattern is also shown in the last row
of Fig. 8.

2) Speed: Table IV summarizes the running time. The
experiments are all conducted on an 8-core machine with
2.67GHz CPU and 16GB memory. In addition to feature
hashing like the other methods, ToF requires an additional step
of feature threading step (Section III-A). Despite this, ToF is
still more efficient than others because the average length of
ToF is much shorter than that of the bag-of-words or bag-
of-images approaches used by VW and CoVW, respectively.
Essentially, the hashing time is mainly affected by two factors:
the total time is linear in the number of sets; and computing the
hash key for a set is linear in the size of the set. After feature
threading, both these factors are reduced significantly due to
the compactness of ToF. Note that in this experiment, for fair
comparison, all methods adopt the same number (k = 100) of
hash tables. It is also worth noting that ToF usually requires
much fewer hash tables in practice, which could further reduce
the running time for real-world applications.

C. Re-Ranking With Hyperlinks

We evaluate our hyperlink-aware re-ranking approach on
the BelgaLogos and TRECVID (TV13 and TV14) datasets.
As shown in Fig. 6, both datasets include abundant small
objects, and thus suffer from the over-norm problem. Belga-
Logos uses small logos as queries, which appear in diverse
backgrounds (e.g., car, wall, bag, football field). TRECVID
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Fig. 10. Performance comparison for different spatial verification techniques. Top: BelgaLogos; Mid: TV13; Bottom: TV14. Numbers in parentheses indicate
the number of ground-truth results for each query.

is more challenging in terms of visual variations as a result
of non-rigid transformation, visual quality and view-point
changes.

1) Compared Approaches: For fair comparisons, all meth-
ods compared in this section are based on the same base-
line [45], which integrates the BoW retrieval model [7],
Hamming embedding [42], multiple assignments [11], and
topological spatial verification [36]. We include the following
methods for comparison: baseline [45], Hsu [15]: Random
Walk re-ranking IR with pairwise image-level similarities;
SPAUG [2]: extending [13] by augmenting each reference
image with spatially consistent features on similar images
in the dataset; and our two versions of re-ranking with

hyperlinking (HL-Loc: localized re-ranking in Section IV-A,
HL-QryEx: query-expanded re-ranking in Section IV-B).
In our implementation, we set α = 0.3, learned from a
separate validation set. Note that most of these methods
suffer from the over-norm problem, since the retrieval/re-
ranking is conducted at the image level. In our experiment,
mean Average Precision (mAP) is adopted for evaluating the
retrieval performances.

2) Performance Comparison: Table V summarizes the
overall performance of various re-ranking methods on the
BelgaLogos and TRECVID datasets, and Fig. 10 details the
performances for each query. In general, the baseline performs
reasonably well on all datasets. Neither Hsu nor SPAUG
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Fig. 11. Example ranks by different methods in the context of object retrieval.
Each row corresponds to a query, a true reference image and the rank positions
of the reference image.

TABLE VI

PERFORMANCE (mAP) ON TRECVID BY SPLITTING THE 57 QUERIES

TO “NON-OVERLAP” AND “OVERLAP” WITH THE ESTABLISHED
HYPERLINK. NUMBERS IN PARENTHESES INDICATE

THE NUMBER OF QUERIES IN EACH CATEGORY

improves the baseline, since both of them cannot cope with
small objects. For Hsu, the transition probability matrix
encodes only image-level similarity, which cannot properly
handle images that share a small logo/object. Similarly, for
SPAUG, augmenting the entire reference image is far less
helpful in retrieving small objects. SPAUG is intended to
augment spatially verified features from other images, and
thus the image representation becomes more robust. However,
SPAUG can only offline augment images, and thus the
augmentation process is independent of the query. Most of
the time, the augmented features are not necessarily derived
from objects similar to the queries, making the results of
SPAUG not adaptive to a given query. Although SPAUG can
exclude spatially inconsistent features from similar images
into feature augmentation, it is still difficult for it to locate
the right object to augment. HL-Loc suffers from a large
number of falsely included hyperlinks, which degrades its
performance in re-ranking. HL-QryEx outperforms other
methods by properly using the hyperlinks for re-ranking.
On the BelgaLogos dataset, 19 out of 26 queries are
improved over the baseline. The reasons for this promising
result are two folds. First, our offline-constructed hyperlinks
connect sub-image level objects. Poorly ranked small
objects can be promoted to the front of the ranking due
to these subimage-level hyperlinks. Second, false linking
that confuses the re-ranking process is effectively excluded
from re-ranking. Using tight parameters (e.g., ht , t)
for hyperlinking and query-expanded re-ranking, our
re-ranking approach focuses on the queried object during
re-ranking. Fig. 11 shows examples of the rankings for two
relevant images retrieved by different methods. Due to the
over-norm problem, the baseline results in a rather poor
ranking even though the objects on the reference images are
clear and rigid. On the contrary, HL-QryEx and HL-Loc

bypass the over-norm problem by directly hyperlinking small
objects via mining.

Although the overall improvement introduced by our
method on TRECVID is not as large as that on BelgaLogos,
the re-ranking approach still manages to produce systemat-
ically better results. Hyperlinking objects in the TRECVID
dataset is much more difficult, due to the large visual variations
among instances of the same object. Therefore, our “hyperlink-
and-rerank” strategy results in a less significant improvement
on the TRECVID dataset.

To show that the performance gain on TRECVID dataset is
not by chance, we conduct a significance test (paired-sample
t-test) with the null hypothesis H0: there is no performance
difference between the baseline and HL-QryEx. Upon comple-
tion of the test, H0 is rejected at the 0.05 significance level.

For our methods, the performance is closely related to the
quality of the hyperlinks. Since we adopt the SIFT feature,
rigid and texture-rich objects (e.g., Dexia, President, 9111-this
dartboard) are more likely to generate high-quality hyperlinks.
On the other hand, non-planar and non-rigid objects (e.g.,
9077-this dog, 9096-Aunt Sal) involve no links or false
links. Therefore, queries involving poor links are either not
affected or degraded in performance. Note that, our mining
technique is also compatible with other features (e.g., MAC
[46]) that work better on non-rigid objects when discovering
semantically similar objects.

The performance can be explained by inspecting the overlap
between the established hyperlinks and the querying objects.
For challenging queries, such as 9074-a cigarette and 9110-
these etched glass doors, no hyperlinks are established for
any instances of the queried object. We split the queries in
TV13 and TV14 into “non-overlap” and “overlap” based on
the cardinality of the hyperlinks ‖H‖ retrieved by a query.
A query is considered as “overlap” if ‖H‖ ≥ 30. Table VI
summarizes the performance after this partition. As expected,
the improvement is more significant on the “overlap” subset (a
relative improvement of 4.6% on overlap, and 2.8% on non-
overlap).

By inspecting each individual query, we find that the
performance is somewhat related to the number of relevant
results in the ground-truth set. For example, the Pearson’s
coefficient between the number of ground-truth and relative
improvement (HL-QryEx over baseline) is 0.59 on BelgaLo-
gos. On one hand, it is easier to hyperlink with more instances
of the object in a dataset, because there are greater chances for
frequent objects (e.g., Adidas, Nike, 9069-no smoking logo,
9101-Primus washing machine) to be hyperlinked. On the
other hand, the re-ranking process can also benefit from a
large number of relevant results in the ranklist.

While encouraging, the degree of improvement for objects
in larger size is limited by our approach. This is not surprise
as large objects suffer less from over-norm problem than
small objects. On Oxford5k dataset with 55 image queries,
which contain mostly large objects, the performances of
HL-QryEx and baseline are 0.5426 and 0.5406, respectively.
As baseline already manages to retrieve most relevant images,
further leveraging hyperlinks only leads to little improve-
ment. In short, the degree of improvement by our approach
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TABLE VII

RUNNING TIME PER QUERY (IN MILLISECONDS) BY DIFFERENT RETRIEVAL METHODS. TOP-500 IMAGES
ARE CONSIDERED FOR RE-RANKING. TIME IN PARENTHESES: (RETRIEVAL/RE-RANK TIME)

is generally more apparent for retrieving small than large
objects.

3) Speed: Since online response time is critical for real
applications, we further compare the efficiency for various
retrieval methods. As shown in Table VII, both our hyperlink-
ing based methods (HL-Loc and HL-QryEx) slightly increase
the running time due to the sparsity of the hyperlink-aware
transition matrix. In contrast, Hsu is much slower in re-ranking
due to dense matrix computation, and SPAUG does not involve
a re-ranking step, but is slow when retrieving images with
augmented features, not to mention time for constructing the
matching graph.

VI. CONCLUSION

This paper presented a framework for object retrieval via
visual hyperlinking. In this framework, a network of subimage-
level hyperlinks is first established via the proposed object
mining technique, which uses ToFs for efficient hyperlink-
ing. Moreover, we investigated the hyperlink-aware re-ranking
algorithms to enable fast Random Walk through object-level
connections. We quantitatively evaluated both hyperlinking
and retrieval on datasets with abundant small objects, and
demonstrated the effectiveness of proposed methods in han-
dling small objects. Based on our study, the over-norm prob-
lem is bypassed via the proposed “hyperlink and re-rank”
framework. More importantly, our framework introduces only
a small computational overhead to online retrieval.

Our approach currently suffers from a number of limita-
tions. First, spatial regularity through geometric verification
is not considered during ToF generation, which may result in
spatially inconsistent results. As other approaches, large object
variations, such as due to non-rigid deformation and viewpoint
change, will result in performance degradation as noted in the
experiments. Future work includes the incorporation of MAC
[46] and objectness properties [3] for more robust generation
of ToF. Second, this paper assumes static dataset and hence
dynamic generation of hyperlinks for newly added images is
not considered. Extending current work for dynamic dataset
requires incremental update of hash tables and hyperlink index
for continuous mining of objects and establishment of new
hyperlinks, which are not trivial issues and worth further
investigation.
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