
1932 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 8, AUGUST 2018
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Abstract— Image forensics aims to detect the manipulation of
digital images. Currently, splicing detection, copy-move detec-
tion, and image retouching detection are attracting significant
attention from researchers. However, image editing techniques
develop over time. An emerging image editing technique is
colorization, in which grayscale images are colorized with realistic
colors. Unfortunately, this technique may also be intentionally
applied to certain images to confound object recognition algo-
rithms. To the best of our knowledge, no forensic technique has
yet been invented to identify whether an image is colorized.
We observed that, compared with natural images, colorized
images, which are generated by three state-of-the-art methods,
possess statistical differences for the hue and saturation chan-
nels. Besides, we also observe statistical inconsistencies in the
dark and bright channels, because the colorization process will
inevitably affect the dark and bright channel values. Based on
our observations, i.e., potential traces in the hue, saturation,
dark, and bright channels, we propose two simple yet effective
detection methods for fake colorized images: Histogram-based
fake colorized image detection and feature encoding-based fake
colorized image detection. Experimental results demonstrate that
both proposed methods exhibit a decent performance against
multiple state-of-the-art colorization approaches.

Index Terms— Image forgery detection, fake colorized image
detection, hue, saturation, ECP.
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I. INTRODUCTION

THE rapid proliferation of image editing technologies
has increased both the ease with which images can

be manipulated and the difficulty in distinguishing between
altered and natural images. In addition to the conventional
image editing techniques such as splicing [1], copy-move [2]
and retouching [3], more image editing techniques, such as
colorization [4] and image generation [5], are proposed. Since
these types of image editing techniques generate new content
with/without references, we denote them as the generative
image editing techniques.

Although image editing techniques can provide significant
aesthetic or entertainment value, they may also be used with
malicious intent. In general, various image editing approaches
employ different mechanisms. Splicing and copy-move tech-
niques usually manipulate part of the image and perform
object-level changes. Image retouching techniques usually
change the images via a variety of mechanisms. For example,
contrast enhancement adjusts the contrast of the image, while
image inpainting usually fills the holes in images according to
the image content. Among the generative image editing tech-
niques, image generation usually produces a meaningful image
from a noise vector with/without some additional information
such as text or a class label. Colorization, on the other hand,
usually colorizes images with visually plausible colors, which
may cause misjudgment when specific objects/scenes must be
identified/tracked.

Fortunately, numerous image forensic technologies have
been developed in the past decades. According to their mech-
anisms and applications, they can be categorized into two
classes, active techniques and passive techniques. The active
techniques usually refer to watermarking techniques [6]–[8],
which embed authentication information in the to-be-protected
images. When the integrities of these images demand verifica-
tion, watermark extraction procedures are performed and the
extracted watermarks are compared to the original watermark
to detect forgeries. Since the active techniques require the
watermark to be embedded prior to detection, the applications,
in practice, are limited.

In contrast, passive image forgery detection approaches,
to which our proposed methods belong, usually detect the
manipulations to the input images directly. Traditionally,
passive image forgery (editing) detection techniques have
mainly focused on splicing detection [1], copy-move
detection [2] and image retouching detection [3]. To the best
of our knowledge, no method has yet been developed to
detect the fake images generated by generative image editing
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techniques. If these images are examined by humans, the cost
increases drastically as the number of to-be-examined images
increases. Obviously, detection via human eyes is insufficient
for the big data era. On the other hand, conventional image
forgery detection techniques are designed with different
assumptions that may not be appropriate for generative fake
image detection. Therefore, generative fake image detection
demands specific studies and designs.

Among the different generative image forgery tech-
niques, colorization already achieves excellent performances.
As shown in Fig. 1, fake colorized images, which are gen-
erated by a state-of-the-art algorithm [4], are visually indis-
tinguishable, if no ground-truth images exist for comparison.
Therefore, the necessity to develop a scheme for fake colorized
image detection increases rapidly. In this paper, we aim to
address this new problem by providing feasible solutions.
Specifically, we propose two simple yet effective schemes
for detecting fake colorized images, which are generated by
fully automatic colorization methods. The contributions are
summarized as follows:

1: We observe that fake colorized images and their cor-
responding natural images exhibit statistical differences,
which can be further utilized as detection traces, in both
color channels and image prior. The color channels
involved are the hue and saturation channels, while the
exploited extreme channels prior is proposed in our recent
work [9].

2: According to the statistical differences in the color
channels and image priors, we propose a fake colorized
image detection scheme, named Histogram based Fake
Colorized Image Detection (FCID-HIST), by proposing
four detection features. Each feature calculates the most
distinctive bin and the total variation of the normalized
histogram distribution for hue, saturation, dark and bright
channels, respectively.

3: To better utilize the statistical information of the training
images, we consider exploiting the divergences inside
different moments of the data vectors and propose a fake
colorized image detection scheme, named Feature Encod-
ing based Fake Colorized Image Detection (FCID-FE),
by modeling the created four-dimensional samples with
a Gaussian mixture model (GMM) [10] and encoding the
samples into Fisher feature vectors [11].

4: In the experiments, the two proposed methods demon-
strate a decent performance in various tests for detecting
fake images generated by three state-of-the-art coloriza-
tion methods.

The rest of the paper is organized as follows. Section II
presents the necessary background. Section III introduces
the proposed work. Section IV describes the experimental
results in various tests and analyzes the proposed methods.
Finally, Section V summarizes the paper and discusses future
work.

II. BACKGROUND

In this section, conventional forgery detection techniques
and colorization techniques are reviewed accordingly.

A. Review of Forgery Detection

Forgery detection [12] has been investigated for decades.
In general, forgery detection explores different characteristics
of images and attempts to find traces to analyze. As mentioned
above, most of the traditional forgery detection techniques
can be categorized into three classes, copy-move detection,
splicing detection and image retouching detection.

Copy-move detection relies on identifying duplicated
regions in a tampered image. Intuitively, these techniques
tend to seek an appropriate feature in a certain domain, such
that the detection can be performed via searching the most
similar two units (such as patches). Different methods usually
exploit different features. Reference [13] explores features in
the frequency domain by dividing the image into overlap-
ping blocks and detects the copy-move forgery via matching
the quantized discrete cosine transform (DCT) coefficients.
Reference [14] performs a rotation invariant detection based
on the Fourier-Mellin transform. Reference [15] localizes the
duplicated regions based on the Zernike moments, which
exhibit the rotation invariance property, of small image blocks.
Reference [15] reports decent results especially when the
duplicated regions are smooth. Reference [16] employs the
famous SIFT feature [17] to detect multiple duplicated regions
and estimates the geometric transformation performed by the
copy-move operation. Reference [18] presents a SIFT based
detection method by matching the SIFT features via a broad
first search neighbors clustering algorithm and distinguishing
the duplicated origins from the tampered regions via CFA
features. Reference [19] introduces a hierarchical SIFT-based
keypoint matching technique to solve a drawback of previous
keypoint matching based detection techniques, which tends
to give poor performances when the copy-moved regions are
small or smooth. Although copy-move detection technologies
have been developed rapidly, they cannot be directly applied
to the fake colorized image detection because no copy-move
operations exist in the fake colorized images.

Splicing detection usually detects the manipulated regions
which originate from different source images. Different from
copy-move detection, these approaches detect the tampered
regions with various traces (features), which usually reveal
the inconsistencies between the tampered regions and the
unchanged regions. Currently, splicing detection can be classi-
fied into four categories, compression-based methods, camera-
based methods, physics-based methods and geometry-based
methods, according to their mechanisms.

Compression-based methods assume that the spliced region
and the original image have undergone different types of
image compression and may exhibit different compression
artifacts. For example, [20] considers the DCT coefficient
distributions of each 8 × 8 block and computes the tampering
probability. By considering the advantages and disadvantages
of different block sizes, [21] constructs a multiscale scheme,
employs the Benford’s law at each level and fuses the results
together to obtain a final localization map. Unfortunately,
the compression-based methods are not appropriate for fake
colorized image detection because the assumption may not
always be valid.
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Fig. 1. (a) Real images. (b) Fake colorized images.

TABLE I

SUMMARY OF THE EXISTING FAKE IMAGE DETECTION APPROACHES

Camera-based methods consider traces left on the image
during the capturing process. Reference [22] detects the exis-
tence of the CFA artifacts, which are due to the demosaicking
process in the CFA cameras, and thus obtains the localiza-
tion map. Reference [23] exploits the photo-response non-
uniformity noises (i.e., the sensor noises) of the camera to
distinguish the tampered regions from the original ones. Ref-
erence [24] also considers the photo-response non-uniformity
noises and a multiscale framework to conduct a multiscale
analysis and detects small forgeries more accurately. Even
if the camera-based methods can be employed to detect the
fake colorized images, their robustness is incompetent because
the sensor noises and the artifacts can easily be affected by
noises and some common post-processing operations such as
compression.

Physics-based methods perform detection based on different
physics phenomenon inconsistencies. Reference [25] considers
the blur type inconsistency between the spliced region and the
original image to localize the tampered region. Reference [26]
explores the illuminant-based transform spaces and combines
different image descriptors, such as color, shape and texture,
to detect forged regions. Since the fake colorized images to be
examined in this paper are forged for the whole image, these

inconsistencies cannot be utilized to detect the fake colorized
images.

Geometry-based methods utilize the geometry information
inside images for detection. Reference [27] explores detecting
the compositions with the two-view geometrical constraints.
Reference [28] considers the planar homographies in the
test images and adopts graph-cut algorithm to obtain the
final localization map. Unfortunately, since the geometrical
characteristics are rarely manipulated in the fake colorized
images, the geometry-based methods will also fail to detect
the colorized images.

Image retouching detection usually considers that the orig-
inal images are restored or enhanced. For example, [29] is
designed to detect the inpainted images by considering the
similarities, distances and number of identical pixels among
different blocks. Reference [3] calculates the histograms and
performs detection via the peak/gap artifacts induced from
contrast enhancement. These techniques can hardly be applied
to the new problem because their mechanisms are specially
designed for their own assumptions.

Table I provides a summary of existing forensic techniques.
Although many detection technologies have been developed,
they are currently not directly applicable to the detection
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TABLE II

SUMMARY OF THE EXISTING COLORIZATION APPROACHES

of images which are manipulated by generative methods.
Specially designed techniques are necessary to address the
detection of fake colorized images.

B. Review of Colorization

Colorization, a term describing the color adding process to
grayscale images, was firstly introduced by Wilson Markle
in 1970. However, this area began to develop rapidly in the
21st century. Colorization techniques can be categorized into
the following types: scribble-based, example-based and fully
automatic.

Scribble-based methods are supervised techniques in which
users begin assigning colors to pixels in the grayscale image.
The milestone work [30], which assumes that the neigh-
boring pixels with similar intensities should have similar
colors, is proposed at first. Various other approaches have
been proposed in succession, such as [31], which constructs
dictionaries for color and textures via sparse representation
and colorizes the images accordingly.

Example-based methods [32], [33] usually require the users
to supervise the system by providing reference color image(s)
similar to the greyscale image. The system then transfers the
colors in the reference color image(s) to the target greyscale
image by searching for similar patterns/objects. The perfor-
mances of these methods are dependent on the quality of the
reference image(s). If the divergence between the greyscale
image and the reference image(s) is high, the colorized result
may be unsatisfactory.

In contrast with the supervised approaches above, fully
automatic methods require no supervision when performing
the colorization task. Reference [34] trains a neural network
and predicts the chrominance values by considering the pixel
patch, DAISY and semantic features. Reference [35] colorizes
the images by jointly utilizing the local and global priors
with an end-to-end network. Reference [4] proposes a state-
of-the-art approach, which exploits the hypercolumn to utilize
both low-level and semantic representations, and colorizes
the images in the Hue-Chroma-Lightness (HCL) color space.
Reference [36] calculates the statistical distributions of the
chrominance information in the LAB space and introduces
a classification-style colorization approach based on a deep
network.

These techniques are briefly summarized in Table II. Due
to the high performances of the fully automatic colorization
techniques, we focus on the detection of the fake colorized
images which are generated via these techniques in this paper.

III. METHODOLOGY

The rapid progress in colorization technologies has enabled
colorized images to be visually indistinguishable from natural
images. State-of-the-art colorization methods are already capa-
ble of misleading human observers in the subjective tests [36].
To distinguish the fake colorized images from the natural
images, we study the statistics of the fake colorized images,
which are generated by three state-of-the-art methods [4], [36],
[35], and propose two simple yet effective detection schemes,
FCID-HIST and FCID-FE.

A. Observations and Statistics

According to our observation, the colorized images tend
to possess less saturated colors, and the colorization method
favors some colors over others, though these differences are
difficult to be visually perceived. Since the Hue-Saturation-
Value (HSV) color space separately represents the chromi-
nance information in the hue and saturation channel, we cal-
culate the normalized histograms (each containing 200 bins)
of the hue and saturation channel in 15000 natural images
and their corresponding fake colorized images, separately,
as shown in Fig. 2.

As shown in Fig. 2, the statistics of the natural and fake
colorized images are different in both the hue and saturation
channels, and there also exist statistical differences (especially
for the peaks in the histograms) among the fake images
generated by different colorization methods. For the hue
channel, the histogram of the fake images tends to be more
smooth and possesses more significant peaks compared to
the natural images. For the saturation channel, the histogram
of the fake images also exhibits different peak values and
variances compared to the histogram of the natural images.
These statistics indicate that the fake images favor different
colors and possess saturation differences compared to the
natural images. Therefore, the natural and fake colorized
images are statistically identifiable, though the fake colorized
images seemed visually indistinguishable.

In addition to the statistical differences in the color channels,
differences also exist in some image priors because they
are not considered explicitly in the colorization process even
though the deep neural networks possess good generalization
ability. In this paper, we exploit our recently proposed extreme
channels prior (ECP) [9], which consists of the dark channel
prior (DCP) [37] and the bright channel prior (BCP). Intu-
itively, DCP assumes that the dark channel of a natural image
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Fig. 2. (a) Normalized histogram distribution of the hue channel (natural images). (b) Normalized histogram distribution of the hue channel (fake images).
(c) Absolute differences of the distributions in (a) and (b). (d) Normalized histogram distribution of the saturation channel (natural images). (e) Normalized
histogram distribution of the saturation channel (fake images). (f) Absolute differences of the distributions in (d) and (e).

is close to zero, while BCP assumes that the bright channel
of a natural image is close to 255. The dark channel Idc and
bright channel Ibc of an image I are defined as shown by
Eqs. 1 and 2, respectively.

Idc(x) = min
y∈�(x)

(
min

cp∈(r,g,b)
Icp (y)

)
, (1)

Ibc(x) = max
y∈�(x)

(
max

cp∈(r,g,b)
Icp (y)

)
, (2)

where x stands for the pixel location, Icp denotes a color
channel of I and �(x) represents the local patch centered at
the location x . Note that the local patch sizes here are identical
to the settings in [9].

By calculating the histograms of the dark channel and bright
channel of 15000 natural images and their corresponding
fake colorized images separately, Fig. 3 presents the expected
differences, especially for the peak values, and supports our
observations above.

B. FCID-HIST

By exploiting the existing statistical differences, we pro-
pose the Histogram based Fake Colorized Image Detection
(FCID-HIST) method to detect fake colorized images.

In FCID-HIST, four detection features, the hue feature Fh ,
the saturation feature Fs , the dark channel feature Fdc and the
bright channel feature Fbc, are proposed to detect forgeries.

The hue feature is constructed from the normalized hue
channel histogram distributions. Let Kh be the total number
of bins in each normalized hue channel histogram distribution.
We define Disth,n and Disth, f as the normalized hue channel
histogram distribution for the natural and fake training images,
respectively, and Distαh as the corresponding histogram for

the αth input image, which can be either a training or testing
image.

Intuitively, to differentiate the fake colorized images from
the natural images, the distinctive features should reveal the
largest divergences between the two types of images. (Note
that the Euclidean distance is employed in this paper to calcu-
late the divergences.) Therefore, we select the most distinctive
bin Distαh (υh), whose two corresponding bins in Disth,n and
Disth, f give the largest divergence between the two histogram
distributions, as part of the hue feature, as follows

Fα
h (1) = Distαh (υh) (3)

where the index of the most distinctive bin υh for the hue
channel is calculated via Eq. 4.

υh = argmax
x

||Disth,n(x) − Disth, f (x)||2
= argmax

x
|Disth,n(x) − Disth, f (x)| (4)

The distributions Disth,n and Disth, f also vary differently
with respect to the bins. We account for this difference in
the hue feature by computing the first order derivative of the
normalized hue channel histogram distribution Dist Dα

h (l) =
Distαh (l + 1) − Distαh (l) to capture the varying trend of the
histogram distribution. This total variation is calculated as
Eq. 5 shows.

Fα
h (2) =

Kh−1∑

l=1

|Dist Dα
h (l)| (5)

The proposed hue feature is then formed by combining Eq. 3
with Eq. 5 into a vector, as Eq. 6 demonstrates.

Fα
h = [Fα

h (1) Fα
h (2)] (6)
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Fig. 3. (a) Normalized histogram distribution of the dark channel (natural images). (b) Normalized histogram distribution of the dark channel (fake images).
(c) Absolute differences of the distributions in (a) and (b). (d) Normalized histogram distribution of the bright channel (natural images). (e) Normalized
histogram distribution of the bright channel (fake images). (f) Absolute differences of the distributions in (d) and (e).

Similarly, the saturation feature Fα
s , the dark channel feature

Fα
dc and the bright channel feature Fα

bc can be constructed
by utilizing the normalized histogram distributions (Dists,n,
Dists, f ), (Distdc,n , Distdc, f ), and (Distbc,n , Distbc, f ) for
the saturation, bright, and dark channels of the training images
respectively.

In the same manner as Eq. 4, the indexes for the most
distinctive bins υs , υdc and υbc can be calculated by Eq. 7.

υch = argmax
x

|Distch ,n(x) − Distch , f (x)|, ch = s, dc, bc

(7)

Then, the most distinctive bins for each feature can be
calculated via Eq. 8.

Fα
ch

(1) = Distαch

(
argmax

x
|Distch ,n(x) − Distch , f (x)|),

ch = s, dc, bc (8)

where Distαch
represents the normalized ch channel histogram

distribution of the αth input image.
The total variation of each distribution is computed via

Eq. 9.

Fα
ch

(2) =
Kch −1∑

l=1

|Dist Dα
ch

(l)|, ch = s, dc, bc (9)

where Kch stands for the total number of bins in each
normalized ch channel histogram distribution and Dist Dα

ch
denotes the first order derivative of the normalized ch channel
histogram distribution.

Then, the features are formed as shown in Eq. 10.

Fα
ch

= [Fα
ch ,0 Fα

ch ,1], ch = s, dc, bc (10)

With all the features calculated, the final detection feature
Fα

H I ST for the αth input image can be constructed via Eq. 11.

Fα
H I ST = [Fα

h Fα
s Fα

dc Fα
bc] (11)

After the detection feature is calculated, FCID-HIST
employs the supporting vector machine (SVM)[38] for training
and detecting the fake colorized images. The FCID-HIST
algorithm is summarized as shown in Algorithm 1. For con-
venience, we let Kh = Ks = Kdc = Kbc in this paper.

C. FCID-FE

Although FCID-HIST gives a decent performance in the
experiments, which are demonstrated in the latter section,
these features may not fully utilize the statistical differences
between the natural and fake colorized images because the
distributions are modeled channel by channel. Therefore,
we propose another scheme, Feature Encoding based Fake
Colorized Image Detection (FCID-FE), to better exploit the
statistical information by jointly modeling the data distribution
and exploiting the divergences inside different moments of the
distribution.

Let Iβ
h , Iβ

s , Iβ
dc and Iβ

bc be the hue, saturation, dark and
bright channels of a training image respectively, where β is
the index of the training image. Then, we create a training
sample set � via Eq. 12.

�
(
(z − 1) ∗ i ∗ j + (i − 1) ∗ j + j

)

= [Iβ
h (i, j) Iβ

s (i, j) Iβ
dc(i, j) Iβ

bc(i, j)] (12)

In contrast to the histogram modeling, FCID-FE models the
sample data distribution G with a Gaussian mixture model
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Algorithm 1 FCID-HIST
Training Stage:
Input: N1 natural and fake colorized training images,
the corresponding labels Lr,H I ST , Kh , Ks , Kdc, Kbc, SVM
parameters
Output: υh , υs , υdc, υbc, trained SVM classifier
1: Compute Disth,n , Dists,n , Distdc,n , Distbc,n

2: Compute Disth, f , Dists, f , Distdc, f , Distbc, f

3: Compute υh , υs , υdc, υbc � refer to Eq. 4 and 7
4: for i = 1 to N1 do
5: Compute Disti

h , Disti
s , Disti

dc, Disti
bc

6: Compute Fi
h(1), Fi

s (1), Fi
dc(1), Fi

bc(1) � refer to Eq. 3
and 8

7: Compute Fi
h(2), Fi

s (2), Fi
dc(2), Fi

bc(2) � refer to Eq. 5
and 9

8: Compute Fi
h , Fi

s , Fi
dc, Fi

bc � refer to Eq. 6 and 10
9: Compute Fi

H I ST � refer to Eq. 11
10: end for
11: Train SVM with FH I ST , Lr,H I ST and SVM parameters

Testing Stage:
Input: N2 test images, Kh , Ks , Kdc, Kbc, υh , υs , υdc,
υbc, trained SVM classifier
Output: Detection labels Le,H I ST

1: for i = 1 to N2 do
2: Compute Disti

h , Disti
s , Disti

dc, Disti
bc

3: Compute Fi
h(1), Fi

s (1), Fi
dc(1), Fi

bc(1) � refer to Eq. 3
and 8

4: Compute Fi
h(2), Fi

s (2), Fi
dc(2), Fi

bc(2) � refer to Eq. 5
and 9

5: Compute Fi
h , Fi

s , Fi
dc, Fi

bc � refer to Eq. 6 and 10
6: Compute Fi

H I ST � refer to Eq. 11
7: Obtain Le,H I ST (i) with Fi

H I ST and the trained SVM
clasifier

8: end for

(GMM) [10] as shown in Eq. 13.

G(�|�) =
N∑

n=1

log p(�n|�) (13)

where N is the number of samples in �, � stands for the
parameter set of the constructed GMM and � is defined in
Eq. 14.

� = ωa, μa, σa, a = 1, . . . , Nm ,

Nm∑

n=1

ωa = 1 (14)

where ωa represents the weight, μa stands for the mean value
vector, σa denotes the covariance matrix and Nm is the number
of Gaussian distributions in the distribution model.

Then, the likelihood of �n being modeled by the GMM �
can be represented by Eq. 15.

p(�n|�) =
Nm∑

m=1

log ωm pm(�m |�) (15)

Algorithm 2 FCID-FE
Training Stage:
Input: N3 natural and fake colorized training images,
the corresponding labels Lr,F E , SVM parameters
Output: �, trained SVM classifier
1: Create samples � � refer to Eq. 12
2: Estimate GMM model � from �
3: for i = 1 to N3 do
4: Encode �i to Fi

F E with � � refer to Eq. 17
5: end for
6: Train SVM with FF E , Lr,F E and SVM parameters

Testing Stage:
Input: N4 test images, �, trained SVM classifier
Output: Detection labels Le,F E

1: Create samples � � refer to Eq. 12
2: for i = 1 to N4 do
3: Encode �i to Fi

F E with � � refer to Eq. 17
4: Obtain Le,F E (i) with Fi

F E and the trained SVM
clasifier

5: end for

where pm(�m |�) is defined by Eq. 16.

pm(�m |�) = exp [−(1/2)(�m − μa)
T σ−1

a (�m − μa)]
(2π)Nv /2|σa |1/2 (16)

where Nv denotes the number of dimensions of each sample
vector. Then, GMM can be constructed by determining the
parameter set �.

With the determined GMM, FCID-FE utilizes different
moments of the distribution and encodes each subset �β of
the sample vectors, which belongs to each training image, into
training Fisher vectors [11] as expressed by Eq. 17.

Fβ
F E = [λ1δG(�β |�)

δωa

λ2δG(�β |�)

δμa,v

λ3δG(�β |�)

δσa,v
] (17)

where v = 1, 2, . . . , Nv and λ1, λ2 and λ3 are defined in
Eqs. 18-20.

λ1 = (
N(

1

ωa
+ 1

ω1
)
)−1/2

(18)

λ2 = (
Nωa

(σa,v )2 )−1/2 (19)

λ3 = (
2Nωa

(σa,v )2 )−1/2 (20)

Then, SVM is employed as the training classifier. For
testing, FCID-FE will first construct the test sample set for
each input image via Eq. 12. Next, the existing GMM from
the training dataset is employed to encode each test image
into the Fisher vector with Eq. 17. At last, FCID-FE classifies
these feature vectors via the trained SVM. The algorithm of
FCID-FE is summarized in Algorithm 2.

IV. EXPERIMENTAL RESULTS

In this section, the experimental setups, evaluation measure-
ments, databases and results are introduced accordingly.
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Fig. 4. (a) Real Images. (b) Fake colorized images.

A. Setups and Measurements

In this paper, one implementation of SVM, the
LIBSVM [38], is employed for classification and the
RBF kernel is selected. The VLFeat software [39] is
employed for GMM modeling and Fisher vector encoding.

In our experiments, both the half total error rate (H T E R)
measurement and the receiver operating characteristic (ROC)
curve (with the area under the curve (AUC) measurement)
are employed to evaluate the performances of the proposed
methods. Denoting P , N , T P and T N as the positive samples,
negative samples, true positive samples and true negative
samples respectively, H T E R is defined in Eq. 21.

H T E R = F P R + F N R

2

= F P/(T N + F P) + F N/(T P + F N)

2
(21)

Note that the natural images and the fake colorized images
are defined as the negative samples and the positive samples,
respectively.

B. Databases
For a thorough evaluation of the proposed methods, different

databases are employed/constructed for different experiments.
We create the database D1 for parameter selection and val-
idation by employing 10000 fake colorized images from the
database ctest10k in [4] and their corresponding 10000 natural

images from the ImageNet validation dataset [40]. The natural
images in D1 include various types of images, such as animals,
human, furniture and outdoor scenes.

In addition to D1, different databases are also prepared to
assess the performances of FCID-HIST and FCID-FE against
different colorization methods. The database D2 consists
of 2000 natural images randomly selected from the ImageNet
validation dataset and their corresponding fake images, which
are generated via [4]. The database D3 is constructed by
randomly selecting 2000 fake colorized images from the
results of [36] and 2000 corresponding natural images from the
ImageNet validation dataset. The database D4, which contains
2000 natural images (randomly selected from the ImageNet
validation dataset) and their corresponding generated fake
images, is produced via employing the colorization approaches
in [35]. Note that the selected natural images and their
corresponding colorized images in D2-D4 are not overlapping
with those in D1.

Similarly, databases D5, D6 and D7 are constructed by
randomly selecting 2000 natural images from the Oxford
building dataset [41] and generating the corresponding col-
orized images with [4], [36], and [35], respectively. Note that
the real images in the Oxford building dataset [41] contain
various content provided by "Flickr".

Some examples from the databases are shown
in Figs. 1 and 4.
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TABLE III

HTER OF FCID-HIST FOR DIFFERENT SVM PARAMETER SETTINGS (IN PERCENTAGE)

TABLE IV

HTER OF FCID-FE FOR DIFFERENT SVM PARAMETER SETTINGS (IN PERCENTAGE)

C. Parameter Selection

Prior to evaluating the performances of FCID-HIST
and FCID-FE against different colorization approaches,
the optimal parameters of the proposed methods are tuned
via experiments. In the experiments, 1000 forged images and
their corresponding natural images are randomly selected from
database D1 to construct the parameter training (par-train)
set, while another 1000 fake images and their corresponding
natural images are selected from D1 to be the parameter
testing (par-test) set. Note that the par-train set and the par-test
set are not overlapping.

Here, two parameters, c and g, which denote the cost
and gamma in LIBSVM, are specifically tuned here via grid
search. Tables III and IV present the H T E R results with
different cs and gs for FCID-HIST and FCID-FE, respectively.
As shown, FCID-HIST should select c = 32, while FCID-FE
should select c = 2 for the parameter c. Since there exists mul-
tiple choices for g, for convenience and consistency, g = 1/2
is selected for both FCID-HIST and FCID-FE in the rest of
this paper.

Next, we study the selection of the SVM threshold, which is
important for the final classification step after the probabilities
are estimated. In the test, the threshold varies from 0 to 1 with
a step size of 0.01. For each proposed method, a 10-fold cross
threshold selection test is performed to obtain the optimal
threshold by employing D1. Table V presents the optimal
thresholds of each fold for FCID-HIST and FCID-FE. There-
fore, the optimal thresholds for FCID-HIST and FCID-FE,

Fig. 5. FCID-HIST and FCID-FE HTER results of 10-fold cross validation.

which are calculated via averaging the optimal thresholds
of each fold, are 0.455 and 0.492, respectively. Note that
the selected thresholds for FCID-HIST and FCID-FE will be
employed in the subsequent experiments.

Since FCID-HIST exploits the histogram distributions to
extract the detection features, the number of bins of the his-
tograms Kc f , c f = h, s, dc, bc should be determined as well.
Intuitively, when Kc f increases, part of the detection feature
corresponding to the most distinctive bins may become less
distinctive, while the rest of the detection feature correspond-
ing to the total variations may capture more details and thus
become more distinctive. To reveal the effects of Kc f , the par-
train and par-test sets and the SVM parameters determined



GUO et al.: FAKE COLORIZED IMAGE DETECTION 1941

Fig. 6. Detection results for the cross colorization method tests. (a) D2([4]) vs D2([4]). (b) D2([4]) vs D3([36]). (c) D2([4]) vs D4([35]). (d) D3([36]) vs
D2([4]). (e) D3([36]) vs D3([36]). (f) D3([36]) vs D4([35]). (g) D4([35]) vs D2([4]). (h) D4([35]) vs D3([36]). (i) D4([35]) vs D4([35]).

TABLE V

OPTIMAL THRESHOLD SELECTION OF FCID-HIST AND FCID-FE (THRESHOLD)

above are employed. In this test, Kc f , c f = h, s, dc, bc ranges
from 200 to 260 with a step of 5. Besides, we also include
Kc f = 256, c f = h, s, dc, bc. As can be observed from
Table VI, there exists no obvious trends when Kc f varies.
By considering the latter results demonstrated in Section IV-D,
in which FCID-HIST gives unstable performances when the
training dataset varies, we believe that Kc f is not a determin-
istic aspect for the performances of FCID-HIST. Therefore,
Kh = Ks = Kdc = Kbc are all set to be 200 for convenience
in this paper.

D. Cross Validation
After the parameters are determined, the cross valida-

tions are performed on FCID-HIST and FCID-FE separately.
Fig. 5 presents the cross validation results of FCID-HIST and
FCID-FE. As can be observed, both FCID-HIST and FCID-FE

achieve a decent performance, where the average HTER of
FCID-HIST is 18.423% and that of FCID-FE is 16.994%.
Clearly, FCID-FE provides a slightly better performance
compared to FCID-HIST. Note that FCID-HIST gives less
consistent performances because the detection feature, espe-
cially the most distinctive bins, may vary for different training
set. It indicates that the extracted handcrafted features in
FCID-HIST possess less robustness compared to the moments-
based features in FCID-FE. The detection performances may
be improved via exploring better and more consistent features
in the future work.

E. Performance Evaluation

In the cross validation tests, both FCID-HIST and FCID-FE
performs decently. Here, a comprehensive performance
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TABLE VI

THE EFFECTS OF Kc f IN FCID-HIST (HTER, IN PERCENTAGE)

Fig. 7. Detection results with different training vs testing sets. (a) D2([4]) vs D5([4]). (b) D3([36]) vs D6([36]). (c) D4([35]) vs D7([35]). (d) D5([4]) vs
D2([4]). (e) D6([36]) vs D3([36]). (f) D7([35]) vs D4([35]).

evaluation for FCID-HIST and FCID-FE is performed with
six additional databases D2, D3, D4, D5, D6 and D7.

Since FCID-HIST and FCID-FE construct the feasible fea-
tures automatically according to the training set, the proposed
methods should be capable of detecting the fake images gener-
ated by different colorization methods, as long as the colorized
images exhibit the observed differences. TO demonstrate the
performances of the detection methods against three latest
colorization approaches [4], [36], [35], each of D2, D3 and
D4 is equally divided into a training set and a testing set.

The experiments are conducted in a manner that the training
sets and testing sets may or may not originate from the
identical databases, such that 9 experiments are performed
to evaluate FCID-HIST and FCID-FE. As can be observed
from Tables VII-VIII and Fig. 6, the proposed methods can
successfully detect different fake images which are generated
from different state-of-the-art colorization approaches, when
the training and testing datasets are from the identical or differ-
ent databases. Besides, FCID-FE gives more accurate detection
results compared to FCID-HIST in most situations. Compared
to Figs. 6(a), 6(e) and 6(i), performance decreases when the
training and testing datasets are from different databases,
especially for FCID-HIST. These drops reveal that FCID-FE,
which gives more consistent performances, models the statisti-
cal information of the images better compared to FCID-HIST.

Next, the cross dataset tests are performed. The nat-
ural images in D2, D3 and D4, originating from the

TABLE VII

HTER OF FCID-HIST FOR DIFFERENT DATABASES (IN PERCENTAGE)

TABLE VIII

HTER OF FCID-FE FOR DIFFERENT DATABASES (IN PERCENTAGE)

ImageNet validation dataset [40], and images in the D5, D6
and D7, originating from the Oxford building dataset [41], are
employed to perform the cross dataset tests.

Similar to D2, D3 and D4, D5, D6 and D7 are all
equally divided into training and testing sets. By pairing the
databases in which the colorized images are generated from
the same colorization method, three database pairs, D2 and
D5, D3 and D6, D4 and D7, are obtained. For each pair of
databases, the cross-dataset tests are performed by employing
one database’s training set and the other one’s testing set,
and vice versa. The experimental results of the cross dataset
tests are introduced in Tables IX-X and Fig. 7. As shown,
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TABLE IX

HTER OF FCID-HIST FOR CROSS-DATASET
TESTS (TRAINING VS. TESTING)

TABLE X

HTER OF FCID-FE FOR CROSS-DATASET
TESTS (TRAINING VS. TESTING)

although the performance somewhat decreases, both methods
still successfully differentiates between the colorized and
natural images, and FCID-HIST again gives less stable per-
formances compared to FCID-FE, with the exception of the
D2 and D5 pair. The unsatisfactory performances for the D2
and D5 pair may be due to the different image content in
different image datasets (D2 from the ImageNet dataset and
D5 from the Oxford building dataset), which induces different
statistical distributions. Since the proposed methods, especially
FCID-FE, rely on extracting the detection features from the
entire distributions, the classifier, which is trained by either
D2 or D5, may fail to correctly classify certain images in the
other one.

In summary, these results indicate that colorization induces
statistical differences in the hue, saturation, dark and bright
channels, and demonstrate the robustness of our proposed
methods against different colorization methods and across
different datasets.

V. CONCLUSION AND DISCUSSION

In this paper, we aimed to address a new problem in the
field of fake image detection: fake colorized image detection.
We observed that fake colorized images and their correspond-
ing natural images possess statistical differences in the hue,
saturation, dark and bright channels. We proposed two simple
yet effective schemes, FCID-HIST and FCID-FE, to resolve
this detection problem. FCID-HIST exploits the most distinc-
tive bins and total variations of the normalized histogram
distributions and creates features for detection, while FCID-FE
models the data samples with GMM and creates Fisher vectors
for better utilizing the statistical differences. We evaluate the
performances of the proposed methods by selecting parameters
for FCID-HIST and FCID-FE and detecting different fake
images generated by state-of-the-art colorization approaches.
The results demonstrate that both FCID-HIST and FCID-FE
perform decently against different colorization approaches and
FCID-FE provides more consistent and superior performances
compared to FCID-HIST in most of the tests.

Although the proposed FCID-HIST and FCID-FE give
decent performances in the experiments, this paper is only
a preliminary investigation, and there are many directions

for future studies that require further exploration. As our
results indicate, the performance of our current methods
sometimes degrades obviously when the training images and
the testing images are generated from different colorization
methods or different datasets, thus blind fake colorized image
detection features and methods may be developed in the future
by studying the common characteristics of different coloriza-
tion methods. Moreover, better feature encoding approaches
can be considered for improving performance, as well as
the optimization of the detection features and parameters to
improve the custom features constructed in this study.
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