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ABSTRACT

Image correspondence is to establish the connections between co-
herent images, which can be quite challenging due to the visual
and geometric deformations. This paper proposes a robust image
correspondence technique from the perspective of spatial regulari-
ty. Specifically, the visual deformation is addressed by introducing
the spatial information by enforcing the distance ratio constrain. At
the same time, the geometric deformation is tolerated by adopting
a smoothness term. Subsequently, image correspondence is for-
mulated as permutation problem, for which, we propose a Gradi-
ent Guided Simulated Annealing method for robust optimization.
Furthermore, our method is much more memory efficient, where
the storage complexity is reduced from O(n*) to O(n?). The ex-
periments on several datasets indicate that our proposed formula-
tion and optimization significantly improve the baselines for both
visually-similar and semantically-similar images, where both visu-
al and geometric deformations are present.
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1. INTRODUCTION

Image correspondence is to establish the connections between
similar points across different images. Due to its wide applica-
tions in many other high-level visual problems, image correspon-
dence has been extensively studied in the past decade as rigid scene
matching, image registration / alignment, optical / SIFT flow, and
dense correspondences. Traditional correspondence problems main-
ly focus on images that are spatially overlap or temporally adjacen-
t, where images are closely related by similar visual appearances,
e.g., the stereo correspondence problem.

Image correspondence is challenging as pictures taken by differ-
ent persons for different purposes may look differently, the image
pairs can be semantically similar images, images with blur / qual-
ity changes, images with occlusions, images taken from different
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Figure 1: The distance ratio gives clues for the spatial regular-
ity in image correspondence. The top image pair plots the dis-
tances between all landmark points. The lines with the same
color indicate corresponding edges. Note that distances are
more stable than angles for complex cases such as semantically
similar cars. The bottom pair shows the result by our method
MatchDR by enforcing the distance ratio constraint.

views of the same 3D object, to name a few. For example, two cars
with different models can be visually dissimilar, and thus difficult
to relate. However, matching images with diverse appearances is a
critical technique for various applications.

The challenges of this problem can be summarized into two type-
s of deformations. The first one is the visual deformation. The
image pairs could exhibit diverse visual appearances in different
background, colors or models, as shown in Fig 1. Matching based
on visual similarities can be very difficult. The second one comes
from the geometric deformation. The same object could show dif-
ferent sizes, shapes and poses, where the Planar Homography does
not hold anymore. For example, cars viewed from different view-
points will also deform in shape.

The problem is traditionally formulated as a quadratic assign-
ment problem (QAP), which is known to be NP-hard, and it in-
corporate both node-to-node and edge-to-edge similarity as struc-
tural information in a bulky way. The memory cost is huge for
coping with large images. This paper proposes a new formulation
which requires much less memory, and a geometric based method
addressing the aforementioned challenges. We define the problem
using the Distance Ratio (DR) matrix. And the proposed method
is named “Match via Distance Ratio" (MatchDR). Based on the



observation that the locations of the corresponding points on pair-
wise images should be structurally similar, we use the constant that
the distance ratios between correspondences should be a constan-
t. Specifically, the objective is to find the permutation matrix to
minimize the variance of the distance ratios. Note that we discard
the absolute locations and only use the relative distances between
points, This kind of information is actually strong enough to recov-
er the original locations of points as stated in [25].

On one hand, we introduce the spatial regularity to the corre-
spondence problem by enforcing the DR matrix, which improves
the quality of visual correspondence where elements are with small
variance. On the other hand, by introducing a smoothness term, the
geometric deformation is modeled by tolerating local spatial jitters.
Compared to other methods using spatial information, our method
is much more memory efficient, due to the DR matrix encoding all
the weight information is of n X n, rather than n? x n?, where n
is the number of landmarks on each image.

Our contributions can be summarized as follows: First, we pro-
pose an effective geometric method by enforcing consistent dis-
tance rations. The problem can be modeled as a permutation prob-
lem. Second, we achieve the state-of-the-art performance on both
visually similar and semantically similar datasets.Third, we pro-
posed a Gradient Guided Simulation Annealing method for robust
optimization of the proposed method. The discovery of new so-
lutions is directed by the gradient, making the optimization more
accurate and effective.

2. RELATED WORKS

Image correspondence is one of the fundamental problems in
computer vision and multimedia, which has been widely studied
through the past decades [8]. According to the information exact-
ed from the images, previous literatures can be divided into visual
based and geometric based methods.

2.1 Visual-based methods

Visual-based correspondence is a reliable method for image cor-
respondence and has already been used in many applications. A
tremendous number of research efforts have been conducted in var-
ious forms. In computer vision, early correspondence method is
often called the stereo correspondences [20, 23]. There are two
different ways dealing with the problem in the literature. Many
algorithms on image correspondence are based on comparing the
differences of the appearance of the landmark points, leading to
area-based matching (ABM) [2, 16] or feature-based matching (F-
BM) [7,9,12], which are classical and well-developed.

Many works have been done since then and there are quite a
lot new techniques for detecting landmarks and generating local
features [17]. For example, the invention of SIFT for detecting
and describing the local features of the landmarks in the images.
Visual-based methods of both pairwise matching [19,24] and multi-
matching [14,26] are based on the feature detection. Recently, the
Convolutional Neural Network is used to detect and describe fea-
tures and gets a better result. Furthermore, [3] trains the LDA clas-
sifier for every pixel to exclude the false matches. [27] trains a con-
volutional neural network to predict how well two image patches
match. [30] introduces the universe to simplify the calculation.

2.2 Geometric-based methods

Though visual based methods make up a large proportion in the
literature, the geometric-based methods are widely found in vari-
ous computer vision problems, e.g., image retrieval [10,28,29]. In
the literature, the spatial information is used as a kind of feature the
same as visual feature ponderously [1]. Spatial rigidity is usually
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preferred, i.e., selecting the correct corresponding pair of edges by
QAP, which is well known as a graph matching problem. While
QAP is NP-hard, many efficient algorithms have been proposed to
solve it approximately. The earliest approach for QAP is the spec-
tral methods [11]. [6] introduces a random walk view on the prob-
lem, and the result is relatively noise-robust. Another weakness for
QAP is that the dimension of the affinity matrix equals the number
of the possible point pairs. Usually, the landmark of an image is
several hundreds, making the affinity matrix very large.

3. METHODOLOGY

3.1 Problem formulation

The image correspondence problem is defined on two related im-
ages. For each image k € {1, 2}, we define an undirected graph as
Gk = (V, &%, WF), where V*, £F, WP¥ denote the nodes, edge,
and attributes of edge respectively.

The pairwise match problem between a graph pair G* and G2 is
to find a one-to-one correspondence 7 between V' and V? which
minimizes some costs between them. py is the number of nodes
in the graph G*. We represent the correspondence 7 by a partial
permutation matrix X € {0, 1}P1*P2. "One-to-one" constraint is
assumed, that is, one node in graph G' can match at most one node
in graph G2 and vice versa. The assumption can be formulated as
the doubly stochastic constraints:

0<X1<1, 0<X'1<1. 1)

3.2 Approach overview and algorithm details

The geometric information of images can be encoded as a graph.
For each image k, we extract py, features, and let V* denote the set
of feature points. The coordinate of the centre point of the ith(i <
pr) feature in image k is (zF, y¥). £* denotes each pair of nodes.
As we want to extract the distance information in every images,
WP (vF, v¥) is regarded as the Euclidian distance on image k be-

iy Yj
tween two nodes i and j, i.e. W*(vf,vf) = \/(zF — a%)2 + (yF

k)2
_yj) :
The adjacency matrix Dy, € RP**P% encodes the geometric in-
formation of graph G*,

N di; = WEVE,VP) i 7 J;
— — Pk
Dy =[di;] = di; =2 S WFOVFRVE) i=j )

1=1,1#4

To avoid zeros in Dy, we replace the zeros in the original affinity
matrix with the mean distance.

For image correspondence, the main problem is to find the cor-
rect correspondence between two graphs G*. As shown in Fig. I,
for the graphs with the same spatial structures, the ratio of distances
should be roughly consistent, i.e.

1 1 1 1
d1¢2 ~ dl,S ~ o~ di,j ~ L~ dpLPl ~C (3)
7d2 =~ 7d2 =~ =~ PP ~ ~ 7d2 ~ C.

1,2 1,3 i D2,p2

To represent the ratios efficiently, we fill the ratios in a matrix:
Q=X"D;XoD5 ", 4)

where o denotes the Hadamard product. The matrix Q is called the
distance ratio matrix.

Ideally, the elements in Q should be the same for a pair of graph-
s. So it is clear that the variance of all elements in Q should be
minimized:

J1(X) = tr((Q - E(Q)) ' (Q - E(Q))) (5)



To compute the variance, E(Q) is a matrix with the mean of

all elements in Q. Particularly, all the elements in F(Q) equal to
a0

Moreover, the estimated X should be sparse since at most one
value in each row of X can be nonzero. To introduce sparsity,
we minimize the summation of values in X. The problem can be
formulated as:

where (-, -) denotes inner product of matrices.

min J(X) = J1(X) + J2(X)

6
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where J2(X) = a(1, X), « is the trade-off weight for sparsity, C
denotes the set of matrices satisfying the constraints in Eqn. (1).
The affinity matrix defined here is much smaller comparing with
the the formulation of QAP. The storage complexity of the affinity
matrix of the proposed formula is reduced from O(n*) to O(n?).

3.3 Optimization

3.3.1 Gradient Guided Simulated Annealing (GGSA)

The solution space of the problem is discrete (see Eqn. (1)) and
the problem is NP-hard. Usually, such problem is relaxed to real
space by treating X as a real matrix. But the methods in real space
e.g. Gradient Descent is slow to converge, and always stucks to in-
ferior local minimum solution in our case. In this paper, we propose
a Gradient Guided Simulated Annealing algorithm to find solutions
in large discrete space. Basically, we follow the framework of the
Simulated Annealing algorithm [4] and improve neighbor genera-
tion using the gradient information.

To optimize Eqn. (6), we first compute the gradient as follow:

dJ 4

== W(Dlx)(xTDQ() oDy ?

(7* - 2(1,X)*)D;X 0 D§ !

02
(4(1,X)? - 3p°)X — Q%X +aX (7)

Although the problem can not be trivially optimized with gradi-
ent descent, % gives clues on generating neighbors:

e According to the gradient, the minimum element of the gra-
dient matrix infers that the corresponding element of X is
most likely to be 1. To keep X a valid permutation matrix,
a 0 changes to 1 at the same time. This new permutation is
included in the neighborhood set X’.

e Meanwhile, the maximum element of the gradient matrix in-
fers 1 — O in the expected solution X. While the corre-
sponding element change 0 — 1 has max(p1,p2) possible
choices. We collect them in the neighborhood set .

The X € X minimizing the Eqn. (6) is an approach to get the
neighbor of the simulated annealing algorithm.

Another approach for the neighbor is random permutation. As
the non-convexity of the problem, the gradient does not always
point to the right direction. To avoid being caught in a local mini-
mum, we randomly generate a permutation matrix as the neighbor
with a probability p. Upon our experimental observation, we set
p = 0.2 in the experiment. Because, in most conditions, the gradi-
ent guided neighbor is trustable. In our paper, the Gradient Guided
neighbor finding method is denoted GGN (D1, D2, X).
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3.3.2 Initialization

Many algorithms have been proposed based on visual matching
or spatial matching. It is hard to match two images with a random
initialization due to several reasons. First, the optimization of E-
qn. (6) is discrete and NP-hard. The solution-space is essentially
O(n!) where n is the number of nodes in the graph. Second, even
the relaxed version (discrete to continuous space) of Eqn.(6) is non-
convex, such that the initialization impacts the result prominently.
To solve the problem, it is necessary to make full use of both visual
and spatial information jointly. Therefore in practice, we mostly
initialize our algorithm with the result of another algorithm to ease
the optimization difficulty. In the experiments, we observe signif-
icant improvements over a range of state-of-the-arts based on this
strategy.

3.3.3  Smoothness term

As the existence of very short edges, the error can be magnified
even with very small geometric deformation, which makes the op-
timization difficult. In such case, the gradient becomes unstable
due to the division by a small (e.g., close to zero) value in Eqn. (4).
The cost of J(X) will change a lot when the denominator slightly
changes. To avoid these errors, we add a smoothness term A for
both sides of the fraction in the distance ratio matrix Q. That e-
quals to adding A to each element of the affinity matrices D; and
D2. Moreover, the smoothness term also tolerates some geometric
jitters for the correspondences.

Above all, the proposed algorithm can be written as Algorith-
m. 1, where P(E(X), E(X"®"),t) = exp((J(X)—=J(X™"))/t).

Algorithm 1 GGSA: Gradient Guided Simulated Annealing

Input: Dy, D,, X°: initialization, T : maximum iterations.
QOutput: Solution X

1: X « X9

2: fort=T---0 do

3: //generate a neighbor based on the gradient in Eqn. (7).

4 X" +— GGN(D1,D2,X);
5 if P(E(X), E(X"™*"),t) > rand(0, 1) then
6: X «+ X" ffupdate solution
7: if converge then
8: break;
9 end if
10 end if
11: end for
4. EXPERIMENTAL EVALUATION

4.1 Datasets and Evaluation Metric

In the real-data experiment we apply our method on image corre-
spondence problems using local feature detectors. The dataset used
is listed as bellow.

The Building dataset [18] contains images taken from the the
frame of a sequence, where the view of a building gradually changes.
The image pairs are visually similar for temporally adjacent frames.
The landmark are points marked by (157"

Willow Object class dataset [5] It includes images of five object
classes. The appearance of images varies significantly, since the
instances are only loosely related to the same semantic object, e.g.,
different models of car. We use SIFT [13] to extract interesting
points and represent the node and edge attributes.

"http://pages.cs.wisc.edu/~pachauri/perm-sync/



Table 1: Performance Comparison with Other Methods in Error-Rates(%)

K-M [15] MatchALS [30] | SM[11] RRWM [6] SMCM [22] SMCP [21]
The Building | "/0; MatchDR | 8T.44 79.72 85.47 78.83 86.02 76.36
MatchDR 30.49 74.95 47.52 39.30 4733 35.78
Willow Object w/o, MatchDR | 88.75 91.63 80.17 68.02 81.08 67.55
MatchDR 47.70 4121 39.48 35.01 45.26 32.37

(b) Kuhn-Munkres(0.95)

(d) MatchALS(0.89)

T

® SM&0.95)

T

(h) RRWM(0.89)
Lol T

(m) rnd-init MatchDR(0.0) (n) rnd-init MatchDR(0.0)
Figure 2: Example results motocycle and car in the Willow.
QOur approach is randomly initialized. The numbers in paren-
theses are the corresponding Error-Rates(%).

We adopt the evaluation metric used in [30]. Given a solution
X9 and the ground-truth X9¢: We measure the error rate by in-
tersection over union:

[m(X7) N 7 (X
[r(Xeto) U T (X’

Error-Rate = 1 —

®

where 7 denotes the correspondence defined by the permutation
matrix X9 or X%, and | - | is the cardinality of the set.
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4.2 Performance Comparison

The methods compared are released, and the codes used in the
comparison are from the corresponding websites. Table. 1 shows
the error-rates of the image correspondence in both datasets, with
both visual based methods (MatchALS [30]?, Kuhn-Munkres algo-
rithm [15]") and geometric based methods (SM [1 17°, RRWM [6]%,
SMCM [22]°, SMCP [21])® in the first row, while the error-rates of
our method (MatchDR) based on the corresponding initialization
are shown in the second row.

The Building dataset is designed for homographic image corre-
spondence. The local feature of images provides a good initializa-
tion, and Kuhn-Munkres with MatchDR achieves the best perfor-
mance. Though their error rate seems high, their results implic-
it more visual correspondence information. The geometric-based
methods cannot leverage the visual information and fail in most
run.

The Willow Object class dataset is mainly for semantic corre-
spondence, where visual-based correspondence is almost invalid.
In table. 1, the geometric based methods offer better initialization,
and our method contributes an obvious improvement for them. As
shown in the example correspondence in Fig. 2, random initializa-
tion is qualified for the proposed method.

S.  CONCLUSIONS

In this paper, we have introduced a novel technique addressing
the visual and geometric deformation problems in image corre-
spondence, by leveraging the consistent distance ratio constraint.
For the visual deformation, we add the spatial regularity into the
correspondence and achieved significant improvement. For the ge-
ometric deformation, a smooth term is introduced to adapt the s-
patial perturbation. Our experiments on several datasets, show the
effectiveness of the proposed method. However, the permutation
problem is essentially difficult to optimize, and sensitive to initial-
ization. Our future direction is to find a more robust optimization
technique and more reliable initialization.
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