
Searching Visual Instances with Topology Checking and
Context Modeling

Wei Zhang, Chong-Wah Ngo
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

wzhang34@student.cityu.edu.hk, cscwngo@cityu.edu.hk

ABSTRACT
Instance Search (INS) is a realistic problem initiated by
TRECVID, which is to retrieve all occurrences of the query-
ing object, location, or person from a large video collec-
tion. It is a fundamental problem with many applications,
and also a challenging problem different from the traditional
concept or near-duplicate (ND) search, since the relevancy
is defined at instance level. True responses could exhibit
various visual variations, such as being small on the image
with different background, or showing a non-homography
spatial configuration. Based on the Bag-of-Words model, we
propose two techniques tailored for Instance Search. Specif-
ically, we explore the use of (1) an elastic spatial topology
checking technique based on Delaunay Triangulation (DT),
and (2) a practical background context modeling method by
simulating the“stare”behavior of human eyes. With DT, we
improve the quality of visual matching by accumulating ev-
idence from local topology-preserving patches, significantly
boosting the ranks of topology consistent results. On the
other hand, we increase the information quantity for visual
matching with the“stare”model, such that instances appear-
ing in both similar and different background can be highly
ranked as results. The proposed techniques are evaluated on
the INS datasets of TRECVID, achieving large performance
gain with small computation overhead, compared with sev-
eral existing methods.
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1. INTRODUCTION
This paper addresses a practical problem in real life: given

several visual examples of an instance topic, retrieve all
video clips that contain the instance from a video dataset.
With the increasing number of videos generated every day,
searching for a certain topic (e.g., an object, a location, or a
person) in large video collections [17] is a feature highly de-
manded by many applications, such as archive video search,
personal video organization/browsing, law enforcement, pro-
tection of brand/logo. As shown in Figure 1, the problem
of retrieving instances is challenging, considering the large
visual variations introduced by totally different background
(1st row), different viewpoints of 3D objects (2nd row), scale
changes (3rd row), and small objects (1st and 4th rows).

The formal definition of Instance Search (INS) is initiated
by TRECVID [17]: given several visual examples of a search
topic with the corresponding binary masks indicating the lo-
cations of the instance, find all video segments that contain
one or more occurrences of the query instance. Though sim-
ilar, the problem of INS is different from its close relatives:
concept-based search and Near-Duplicate (ND) search [4,
19]. For concept-based search, the relevancy is defined at
the semantic level, and any results with the same semantic
meaning meet the searching criteria. For example, search-
ing “plane” should return planes with any types, colors, and
sizes, while INS should only return the same plane as spec-
ified in the query. It also differs from ND search, where
certain image operations (e.g., scaling, rotation, cropping,
noises, and text overlay) are applied on the source image to
produce NDs. For INS, the instance could appear in a to-
tally different background context with different viewpoints,
as long as the video segments contain the same instance. In
general, ND search is more useful for whole image search,
since both the instance and background can be exploited
for visual matching. On the other hand, INS has less infor-
mation to leverage, since the background is not necessarily
useful in this case.

Although INS can be formulated as a traditional image
retrieval problem, it has its own peculiarities in several ways:

1. Different from ND search, instances often occupy a small
area on the image, and the background context is often dif-
ferent among images with the same instance.

2. A manually labeled ROI (Region-of-Interest) is often avail-
able for the query, so that we can distinguish the instance
under query and background context. The labeling of ROI
can be easily done with the help of touch screens.

Considering the characteristics of INS, a potential diffi-
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Figure 1: Examples of query topics in TRECVID
datasets. Columns from left to right: topic name,
image examples for the topic, and examples for rel-
evant video keyframes. Contours of the ROI/mask
are outlined with blue curves on each query image.

culty is that there is much less visual information to be ex-
ploited, especially when the size of query instance is small,
as shown in Figure 1. Querying with such less information
is error-prone, since the limited information is often not dis-
criminative enough to retrieve instances out of a large video
collection. As a result, lacking of quality and quantity in-
formation for visual matching becomes the major difficulty
for INS. To tackle this problem, we propose two methods
from different perspectives. The first one is by taking bet-
ter use of the available information by modeling the spatial
topology consistency. In other words, the lack of quanti-
tative information is compensated by quality matching via
topology checking. With an elastic topology model for spa-
tial checking, we attempt to boost the ranking of relevant
instances by making better use of the spatial information.
Different from previous methods that impose a linear trans-
formation over the absolute matching locations, we sketch
and match the spatial topology based on Delaunay Trian-
gulation. The second strategy seeks a way to increase the
amount of query information by carefully considering the in-
formation from background context. Generally, we trust the
information from the ROI, and it is risky to consider the ar-
eas outside. However, the information outside the ROI may
enrich the limited information and provide more cues about
the instance. The key is when to consider the context and
how to weight the contribution from each parts. Inspired
by the way of visual perception for human eyes, we enrich

the instance under query by introducing a “stare” model to
improve the discriminative power of instances.

The main contributions of this paper can be summarized
as follows:

• We apply a triangulation based spatial consistency check-
ing method originally proposed for image search [21]. The
method emphasizes the topological consistency for quality
matching. Rather than imposing a strict transformation for
geometric consistency checking, a graph is constructed to
encode the topology information for matched points. This
gives better tolerance to true responses in INS by accumu-
lating evidence from local regularities of the instance.

• Background context is modeled into the query by using
the“stare”model that simulates the visual perception behav-
ior of human eyes. Both NDs, which share common back-
ground with the query, and instances with novel background
can be retrieved.

The remaining paper is organized as follows. Section 2
describes related work. Sections 3 presents the topology
checking method with Delaunay Triangulation to improve
the quality on visual matching, while Section 4 proposes the
“stare” model for context modeling to increase the quantity
of matchings. Section 5 presents our experimental results
on the datasets of TV11 and TV12, and finally Section 6
concludes this paper.

2. RELATED WORK
The proposed method is rooted in the Bag-of-Words (BoW)

retrieval model, which was initially used in text retrieval.
Since introduced in [16], it has been widely used in mul-
timedia retrieval community for its good tradeoff between
performance and scalability. Standard BoW technique con-
sists of several key components: image description, visual
vocabulary, feature quantization, and inverted file. Images
are first scanned for stable and representative regions [12,
11] and the local features [11] are extracted afterwards. The
offline trained visual vocabulary defines a quantization func-
tion of the feature space, such that features quantized to the
same visual word are considered to be similar. At the time of
online retrieval, only a small subset of features is traversed
with the help of inverted file.

Various modifications have been proposed to improve the
original BoW method. Studies on fast vocabulary training
[14] and the hierarchical structure [13] enable the million
scale vocabulary with fine quantization [24]. Hamming Em-
bedding [8], product quantization [10], and soft/multiple as-
signments [15, 8] further reduce the quantization error by
better partitioning the feature space or smoothing the er-
ror. Query expansion [5] improves the recall significantly by
formulating a refined query in each iteration.

Among all the variants of BoW, spatial consistency check-
ing has always been a big branch, since the original BoW
model makes no guarantee on the spatial regularity of vi-
sually matched patches. Filtering isolated matching points
[16], bundling spatially-clustered features [20] impose a weak
spatial constraint on visually matched feature points. How-
ever, these constraints are often too loose to reject the large
number of false positives, especially for a large dataset. On
the other hand, most of the strong spatial checking tech-
niques are rooted in the planar homography [7] that requires
the scene under view to be planar or the camera centers be-
ing at a fixed location. In practice, it is often approximated
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as the affine model [14], which works well for small areas,
buildings with planar facades, or small viewpoint changes.
Latest techniques rooted in the homography model include
WGC [8], E-WGC [23], and GVP [22], which have gained
great success in the past few years in terms of retrieval per-
formance. However, the homography model works best on
ND [19] or near identical [4] dataset. For 3D objects taken
from different viewpoints, the exact spatial configuration is
the epipolar geometry [7] with the fundamental matrix pro-
jecting a point to its epipolar line. Only a few works [2, 3]
explore this model, which successfully retrieve some of the
missed matching points for 3D structures. However, unlike
the one-to-one mapping for homography, the fundamental
matrix can only project a point on one image to a line on
the other image, which is also considered to be a weak con-
straint. However, spatial checking for INS, which consists
not only non-planar/3D structures (violating the planar ho-
mography), but also non-rigid instances (violating even the
epipolar geometry), is seldomly addressed before.

The use of background context is trivial for traditional
ND search, and most existing works just uses or discards
the context completely. For example, since the background
is also part of the query for ND search, it is fully included
for retrieving ND images in [19, 4, 23]. For mobile search,
where a ROI comes in handy, such as Google Goggles 1 and
Snaptell2, the background context is often ignored. How-
ever, for the problem of INS, the context information should
be modeled to enrich the limited query information, in order
to retrieve novel instances in different background as well as
NDs when available.

3. SPATIAL TOPOLOGY CHECKING
While suitable for the visual similarity measurement, BoW

does not guarantee the spatial regularity of matched fea-
tures. However, spatial information is crucial for visual
recognition, and is even important for instance retrieval,
considering the limited number of features on the query
target. Different from ND search, there exists lots of non-
planar structures and 3D objects (Figure 1) that do not fol-
low the planar homography transformation. Moreover, there
are even non-rigid instances (e.g., person) that do not follow
the epipolar geometry. Most of the existing works impose a
linear transformation, which works best for planar and rigid
instances. For general instance types including non-rigid and
non-planar objects, we elastically model the spatial topol-
ogy with Delaunay Triangulation based visual words match-
ing [21]. In this section, we first summarize the essential
spatial configurations [7] of corresponding points for INS,
and then propose our spatial topology checking method.

3.1 Spatial Configurations for INS
Let x1 and x2 be the homogeneous coordinates of corre-

sponding points on the query and reference image, respec-
tively. Spatial locations for planar scenes can be related
by a planar homography matrix H: x1 = Hx2, which de-
fines a point-to-point mapping between correspondences of
a planar plane or two views taken with fixed camera cen-
ters, which suits well for ND search. When it comes to
3D objects, the intrinsic projective geometry between two
views becomes the epipolar geometry encapsulated by the

1http://www.google.com/mobile/goggles/
2http://snaptell.com/

Figure 2: Illustration of the spatial topology check-
ing method based on Delaunay Triangulation (DT).
Left: two images with their matched features lined
up. Note the matched words are indicated with the
same color. Right: the triangulation graphs sketch-
ing the topology of matching points on the left.

fundamental matrix F: xT
1 Fx2 = 0, which only defines a

weak point-to-line mapping. Things are more complicated
for INS, which includes plenty of 3D structures and even
non-rigid instances (such as persons, animals). Neither pla-
nar homography nor epipolar geometry fits in this case. For
example, previous spatial checking techniques fail on the the
butterfly example in Figure 2, since the spatial variation is
caused by a non-planar instance with a non-rigid motion.
This section partially addresses this problem by proposing
an elastic model that emphasizes the spatial topology regu-
larity.

3.2 Topology Checking via Triangulation
Delaunay Triangulation: This is a technique widely used
in Computer Graphics for building meshes out of a set of
points. A Delaunay Triangulation [6] for a set of points P
on a 2D plane is a triangulation DT(P), so no point in P is
inside the circumcircle of any triangle in DT(P). DT max-
imizes the sum of the minimum angles of all triangles after
triangulation, such that regular/balanced triangles, rather
than skinny ones, are preferred. Compared to other trian-
gulation of the points, the smallest angle in Delaunay Tri-
angulation is at least as large as the smallest angle in any
other triangulations [1].
Motivation: Since there is no uniform transformation for
the non-planar/non-rigid objects that occurs in INS, we seek
for solutions from another perspective, i.e., topology. Our
motivation is that the spatial topology tends to be stable
for (1) different views of 3D objects for small/moderate
viewpoint changes, and (2) locally rigid/planar parts of a
non-rigid/non-planar instance. For example, among differ-
ent views of the “plane flying” and “Brooklyn bridge tower”
in Figure 1, relative positions of feature points stays the
same for local near planar surfaces as well as for non-severe
viewpoint changes; the butterfly in Figure 2 has non-rigid
motion, but most of the local rigid sub-structures (e.g., the
wing) still keeps their spatial layout consistent. We apply
an elastic spatial consistency checking strategy to be able to
accumulate evidence from these locally consistent patches in
3D view changes and non-rigid transformations.

Our model should be neither too weak to reject inconsis-
tent spatial layouts nor too strong to rule out true spatial
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configurations. Specifically, the model should be able to (1)
accumulate evidence from locally consistent patches and tol-
erant small motions/viewpoint changes for non-planar/non-
rigid instances; (2) work reasonably for NDs; and (3) effec-
tively filter inconsistent spatial configurations. Instead of
modeling the transformation for absolute spatial locations,
we use a “sketch-match” process to model the topology of
spatial layouts of matched feature points. Since our method
is based on Delaunay Triangulation, we name our spatial
checking as DT in short.
Sketch: For instance search, given the matched words be-
tween a query instance Q and a reference image R, DT
sketches the spatial structures of Q andR respectively based
on the matching locations. Figure 2 shows an example of the
triangulation constructed on matched points of Q and R.

For DT, it is a deterministic algorithm and the resulting
triangles tend to be“regular”, such that spatially neighbored
points are coupled as edges and triangles, which are stable
against small spatial perturbations as long as the topology
holds. Note that the topology information is sketched into
the graph after triangulation. For example, each edge (tri-
angle) depicts the spatial nearness of two (three) points,
and the full set of edges (triangles) gives a rather detailed
“sketch” for the relative positioning of matched features. In
this way, the absolute locations of the matched features are
discarded and only the topology remains. Note this repre-
sentation is invariant to scale, rotation changes.

For constructing meshes, the one-to-one mapping con-
straint needs to be enforced to ensure the number of nodes
in each graph is identical. This is done by enforcing a point
from Q to match only one point on R with the smallest
Hamming distance. The enforcement effectively prevents an
excessive number of redundant matches, an effect known as
the “burstiness” [9].
Match: After triangulation, the spatial consistency is mea-
sured by graph matching. We have compared several strate-
gies by considering different local structures (such as edges,
triangles), and different weighting functions in terms of per-
formance and efficiency, resulting in a computational effi-
cient approach for matching graphs. With ΔQ denoting the
mesh of Q, the geometric consistency of R and Q is mea-
sured as:

BF(Q,R) = ‖EΔQ ∩ EΔR‖, (1)

where EΔQ denotes the edge set of ΔQ, and BF indicates the
number of common edges3 between Q and R. The retrieval
score of R is then weighted by BF(Q,R). This measurement
works well in practice, because the features are coupled to-
gether while matching, resulting much lower false positive
rate.

3.3 Discussion
After triangulation, the mesh can be regarded as an “ab-

stract”, or the approximation for the original shape. In com-
puter graphics, this mesh is usually used to approximate
the original shape. While in our case, the edge is encoded
with the information of spatial topology for matched fea-
ture points. By viewing this mesh as a graph, the process of
sketch discards the absolute spatial locations and leaves only
the relative spatial nearness of a set of points distributed on
a plane. Then the match process measures the topological

3Two edges are regarded as common if their vertices share
the same visual words.
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Figure 3: Sensitivity test of M on TV11, by applying
DT on different number of max matching points.

layout consistency as graph similarity. Figure 2 gives an ex-
ample on how DT works. Due to the non-rigid motion of the
flipping wings, there are no linear transformations that could
transform the matching locations from one to the other. If
RANSAC is used with a linear model (either homography
or epipolar), only a fraction of the “good” matches could
survive, because the dominant linear transformation (e.g.,
defined by the matches in the yellow solid ellipse) will rule
out many other good matches (e.g., matches on the wing in
red dashed ellipse). For example, E-WGC is only able to
locate five true matches for similarity ranking. DT, on the
contrary, can accumulate evidences from both wings (yel-
low and red ellipses) and obtain a much higher confidence
in topological similarity, since only relative positioning is
sketched. Besides the locally consistent patches, non-rigid
or non-planar regions of an object can also be partially tol-
erated as long as the motion of 3D structure is not severe.
Interestingly, this assumption often holds for real life objects
in practice. For example, when people are walking, spatial
locations of each body parts only move in a small range,
which would result in a graph different from that for irrel-
evant objects. In Figure 2, the high similarity score is also
partially contributed by the this kind of topological consis-
tency between wings.

While simple, DT has the following merits: (1) the relative
spatial position of words is considered, (2) no assumption of
any transformation model is made, (3) a certain degree of
freedom for variations of word positions is allowed. Com-
pared to weak spatial checking techniques, criterion (1) con-
siders the topology of words, and thereby is more effective
in measuring geometric consistency. Compared with strict
spatial checking [23, 22], criterion (2) does not impose any
prior knowledge on types of instances and transformations,
and thus the checking of geometric coherency is looser. How-
ever, by allowing variations of local changes as stated by cri-
terion (3), DT is a flexible model, which is more adaptable to
INS. A fundamental difference between DT and other spatial
checking techniques is that no pruning of false matches or
model estimation is involved. Instead, DT enumerates the
potential true matches with the local topology consistency
based on criteria (1) and (3), while tolerating good matches
by not imposing any prior constraints based on criterion (2).

3.4 Complexity
Time: The two major steps of DT are the triangulation and
the counting of common edges. The first step can be effi-
ciently conducted by divide-and-conquer in O(n log n) time,
where n is the number of matched words between Q and
R. The second step can be done by a simple linear scan of
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edges with O(|e|), where |e| = O(n) is the number of edges.
So the computation is dominated by O(n log n). In our ex-
periments, since a large vocabulary is used, n is quite small
a number in most cases. Whenever n is larger than some
value M , random sampling is performed to limit maximal
M matching points, such that only a small random subset
of matches is evaluated by Eq. (1). Figure 3 shows the sen-
sitivity test on TV11 dataset. As shown, larger M gives
more detailed sketch and better performance. When M is
large enough, the performance tends to be stable. In our
experiments, we set M = 30 to balance the efficiency and
performance. In practice, DT runs fast, since it is only ap-
plied on images that have common visual words with the
query image.
Space: For DT, we need to keep track of the matched points
locations [(qx, qy), (rx, ry)] between the query q and each
reference image r. For a dataset with N images, 4×M ×N
short integers are needed, which is approximate 288 MB, if
M = 30 and N = 106 for a million scale dataset.

4. CONTEXT MODELING WITH “STARE"
Another problem for INS is how to use the background

context. The ROI region alone gives clean and precise de-
scription for the target but less information, while the whole
image carries more cues with more noises. The region inside
ROI is definitely important, since it indicates the searching
focus. However, we know little about the relevancy between
the instance and the background context. Whether to use
context information is by no means easy to tell, without the
knowledge of the reference dataset beforehand.

Inspired by the perception behavior of human eyes, we
weight features in different regions with a “stare” model
to simulate human eye-sighting. At the time of starring
at something, human eyes always have a focus (f), where
things can be captured clear and nice, and scenes away from
the focus “blurs” accordingly. In our “stare” model, the fo-
cus is a virtual point defined as the center of ROI, and the
surrounding regions are down-weighted by a Gaussian func-
tion. The complete weighting function k(x) for a feature x
is given as:

k(x) =

{
1, if x ∈ ROI,

exp(− ‖x−f‖2
2δ2

), otherwise,
with δ2 = − diag2

8 ln 0.1
,

(2)

where diag is the length of diagonal axis of the query image.
Figure 4 (left) is an illustration with a circular ROI located
at the center of a square picture. With the assumption of
uniformly distributed feature points on the image plane, in-
tegrating the weights on ROI and background according to
Eq. 2 gives the contribution ratio f(r,N) of features inside
the ROI while retrieving:

f(r,N) =

∫
x∈ROI

1dx∫
x∈ROI

exp(− ‖x−f‖2
2δ2

) dx+
∫
x∈ROI

1dx
(3)

Figure 4 (right) plots the simulation result of this ratio
of contribution f(r,N) with respect to the ratio of sizes
(2r/diag). With the“stare”model, we adjust the weights on
object and context adaptively for different sizes of instances.
We tend to lay more emphasis on context for smaller in-
stances, and vice verse. Note the curve in Figure 4 (right)
is not completely sigmoid-like, since part of the ROI is out

of the image when the ratio 2r
diag
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Figure 4: Left: illustration of the “stare”model with
a circular ROI (with radius r) on a square image
(resolution: N ×N). Right: the proportion of accu-
mulated weights from ROI (the object), with respect
to the ratio of sizes “2r/diag”.

Table 1: Statistics for TV11 & TV12.
# topic # query # video # frame # feature

TV11 25 95 21k 574k 484m
TV12 21 102 75k 822k 1,323m

5. EXPERIMENT
This section evaluates the proposed methods for spatial

checking (DT) and context modeling (“stare”). We start by
introducing the TRECVID INS datasets, and then evaluate
the performance of each method by comparing with other
state-of-the-art techniques.

5.1 Dataset and Retrieval Model
Dataset: We use the TRECVID [17] INS datasets in years
2011 and 2012, named as TV11 and TV12, for experiments.
The datasets contain video clips/shots cut from BBC Rushes
and Flickr videos respectively for TV11 and TV12. The
queries are topics on person, object, and location entities,
which are delimited with several image examples together
with the masks indicating the instances. The task [17] is to
locate for each query topic up to the 1000 clips most likely
to contain a recognizable instance of the entity. Figure 1
shows some query topics together with their corresponding
ground truth video frames in the datasets. Table 1 summa-
rizes the statistics of the datasets, and Table 2 lists the query
topics in TRECVID datasets. Although there are only 25
(21) topics in TV11 (TV12), they cover a wide range of real
life instances including objects, locations, and person. On
average, each topic has 3.8 (4.9) image examples for TV11
(TV12), and a binary mask is also provided for each image
example. Mean inferred AP (denoted as MAP for short) is
used for evaluation.
Retrieval Model: Unless otherwise mentioned, the follow-
ing BoW-based retrieval model is adopted for all the ex-
periments. For offline processing, keyframes are extracted
at the rate of one frame per second from raw videos, and
Hessian-affine detector [12] and SIFT [11] descriptor are used
for feature extraction. A hierarchical vocabulary [13] with
250k leaf nodes is constructed using K-Means in a top-down
manner. Then, the features are indexed with an inverted
file for fast retrieval. Auxiliary information, including Ham-
ming signature [8] and spatial locations, are also indexed
for word filtering and geometric checking. During online
retrieval, a similar procedure is carried out for each query
example. To reduce quantization error, a descriptor is as-
signed to multiple visual words by soft-weighting [15]. By
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Table 2: Topic lists for TV11 & TV12 datasets.
TV11 TV12

ID Topic Name ID Topic Name
9023 setting sun 9048 Mercedes star

9024 upstairs, inside windmill 9049 Brooklyn bridge tower

9025 fork 9050 Eiffel tower

9026 trailer 9051 Golden Gate Bridge

9027 SUV 9052 London Underground logo

9028 plane flying 9053 Coca-cola logo - letters

9029 downstairs, inside windmill 9054 Stonehenge

9030 yellow dome with clock 9055 Sears/Willis Tower

9031 the Parthenon 9056 Pantheon interior

9032 spiral staircase 9057 Leshan Giant Buddha

9033 newsprint balloon 9058 US Capitol exterior

9034 tall, cylindrical building 9059 baldachin-St.Peter’s Basilica

9035 tortoise 9060 Stephen Colbert

9036 all yellow balloon 9061 Pepsi logo - circle

9037 windmill seen from outside 9062 One WTO building

9038 female presenter X 9063 Prague Castle

9039 Carol Smilie 9064 Empire State Building

9040 Linda Robson 9065 Hagia Sophia interior

9041 monkey 9066 Hoover Dam exterior

9042 male presenter Y 9067 MacDonald’s arches

9043 Tony Clark’s wife 9068 PUMA logo animal

9044 American flag

9045 lantern

9046 grey-haired lady

9047 airplane-shaped balloon

traversing the index with HE filtering, images sharing com-
mon visual words are rapidly retrieved from the reference
dataset. Since the final relevancy is evaluated at video level,
the score for each video clip is obtained by accumulating
scores from its keyframes, and the evidence of each query
example is linearly combined by average fusion for the final
ranking list.

5.2 Performance Comparison
We compare the following approaches: WGC (Weak Ge-

ometric Consistency) [8], E-WGC (Enhanced WGC) [23],
GVP (Geometric-preserving Visual Phrases) [22], and our
proposed approach DT. All the approaches are built on top
of the BoW model described in Section 5.1. GVP is a vot-
ing approach that uses offset (or translation) information
for rapid geometric checking. WGC, in contrast, votes the
dominant scale and orientation for fast but weak geometric
checking. E-WGC incorporates the advantages of GVP and
WGC by voting the translation after scale and orientation
compensation. We also test variants of DT by applying it
on the whole query image (denoted as DT), instance only
(denoted as DT O), and context modeling using “stare” (de-
noted as DT C).

5.2.1 Spatial Checking
Generally, in the set of matched points between two im-

ages using BoW method, there are many mismatches and
outliers due to photometric and geometric variations. Ap-
plying a geometric consistency checking is important to re-
move false positives and improve the performance. Figure 5
contrasts the performances of different spatial checking tech-
niques, and Figure 6 shows several search examples with
the ranking information attached on the right side. The
baseline method of BoW does not use any spatial checking
techniques and ranks results purely based on visual similar-
ity. WGC, E-WGC, GVP and DT, which impose a spatial
consistency constraint on the matching points, show sim-
ilar or better performances as BoW. In particular, WGC
filters false matches by voting the dominant scale and ori-
entation between two images, but makes no guarantee on
consistent spatial layouts for the matching points. E-WGC
considers the scale, orientation, and translation jointly into
an affine model, and votes the dominant translation offsets
after compensating the difference of scale and orientation.

Figure 6: Examples on the ranks of retrieved images.
For each example, the query is shown on left, and
the corresponding retrieved images are on the right.
The ranks of the retrieved image given by different
spatial verification techniques are indicated by the
numbers on the right hand side, ordered by DT,
BoW, WGC, E-WGC, and GVP from top to bottom.

It works well for ND search, since scaling, rotating, and
translating the image are common operations to generate
NDs. However, both WGC and E-WGC suffer from impre-
cise scale/orientation estimation during feature extraction,
especially for images with heavy noises, non-rigid objects,
or 3D scenes captured from different viewpoints. GVP can
be regarded as a special case of E-WGC, when two images
are with identical scale and orientation. In other words,
GVP votes the translation without compensating scale and
orientation. Thus, it gets rid of the potential variations in
scale/orientation estimation by assuming features from two
images share the same scale and orientation, but also be-
comes more sensitive to scale/orientation changes even for
ND pairs. Note that the spatial consistency model used in
WGC, E-WGC, and GVP are all rooted in planar homogra-
phy. Although they are able to rank some true responses
(mainly near duplicates) higher, the final performance is
downgraded because of the large number of falsely pruned
true matches. This observation coincides with that in [18],
where only a few topics benefits from the homography model
and others does not. In our case, eight (seven) topics in
TV11 (TV12) are improved by imposing the homography-
based techniques, while other topics show similar or worse
performance. Note for topics that totally violate the homog-
raphy, the stronger the model it uses, the worse the perfor-
mance is. For example, the topics 9026 (trailer) and 9057
(Leshan Giant Buddha) are with 3D objects viewed from
different viewpoints, so they suffer less on WGC, which is
a weak constraint, than on E-WGC and GVP, which are
strong point-to-point transformations.

DT, instead of using a homography-based transformation,
models the topology layout of matching points into a graph.
It has several benefits. First, it is born to be invariant to
scale/orientation changes. Since only the connectivity of
nodes matters for a graph, scaling and rotating the image
result in exactly the same graph. For example, the query
and reference images shown in the last row of Figure 6 give
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Figure 5: Performance comparison for different spatial checking techniques. Top: TV11. Bottom: TV12.

Figure 8: Effect of context modeling. The query
and retrieved images are shown on the left and right
sides, respectively. The ranking of different strate-
gies on the retrieved images are indicated on the
right hand side, ordered by the ranks given by ap-
plying context modeling with“stare”model (DT C),
whole image (DT), and instance only (DT O).

the same graph, as long as the corresponding features can be
matched. While for WGC and E-WGC, the requirement for
small noises in the scale/orientation estimation makes them
less robust in result ranking. Second, for non-homography
spatial configurations introduced by different views of non-
planar objects (first two rows of Figure 6) and non-rigid
motions (3rd row), DT still get some evidence from the
local topology-preserving regions. Third, for small num-
ber of the matching points caused by scale changes (left
example in last row) or blur/noise/compression (right ex-
ample in last row), DT actively boosts the ranking of the
results according to Eq. 1, as long as the matched points
are topologically consistent. While for other methods based
on voting-and-pruning, the true responses with small num-
ber of matching point can only be boosted when the higher
ranked false positives are downgraded by pruning of false
positive matches. In other words, by (1) being invariant to
scale/orientation changes, (2) allowing to get evidence from
local topology-consistent sub-regions, and (3) act actively on
boosting topology consistent results, true responses in INS
have better chances to be boosted in the ranking list for DT
than other homography-based methods.

5.2.2 Context Modeling
For TRECVID INS datasets, some instances in the refer-

ence videos appear in the same background context, while

others in totally different context. Retrieving using either
the whole image or the region inside ROI could miss some
instances in the top list. Context modeling is designed to
tradeoff between this situation and aims to bring both types
of instances to top positions in the ranking list. Figure 7
shows the performance of different strategies of using con-
text, including our context modeling with “stare”, retriev-
ing with the object inside ROI and whole image. We test
these strategies on both methods without (BoW) and with
(DT) spatial checking. By comparing the overall perfor-
mances, the context does contain some useful information,
since the method with BoW O/DT O gives worse result
than BoW C/DT C on most topics. Our context model-
ing performs best among all variants for both BoW and
DT, showing its effectiveness in retrieving instances with
different background, without hurting too much on the ND
results with the same background. Figure 8 further lists
some examples, showing the tradeoff between exploring in-
stances with different background and retrieving NDs with
the same background. As shown in the 1st row, the ranks
of ND results are only slightly downgraded by context mod-
eling with “stare”, since NDs usually cover the whole image
and it still remains easy to retrieve with even down-weighted
context information. While for instances appearing in differ-
ent background as the query image (2nd row of Figure 8),
the process of down-weighting of background context be-
comes essential to boost the rankings for results in different
background context. The “stare” model shows the best per-
formance for both BoW and DT, almost on every topics,
except those with dense and discriminative features already,
such as (2nd row of Figure 8) landmarks (9050: Eiffel tower,
9058: US Capitol exterior) and logos (9053: Coca-cola logo,
9068: PUMA logo). In such cases, adding more context con-
fuses the targets that are already strong and clear. However,
the ranks are not significantly downgraded and still remains
top in the list, since the weighting in Eq. 2 still lay a lot of
emphasis on instances with plenty of features.

5.3 Speed Efficiency
The experiments are conducted on a 8-core 2.67GHz com-

puters with 30GB RAM. Only one core is used for online re-
trieval. Table 3 details the average running time for search-
ing one query image from each dataset. As shown, BoW
runs fastest among all the methods. WGC, GVP, and E-
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Figure 7: Performance comparison for different strategies of using context. Top: TV11. Bottom: TV12.

Table 3: The average running time (in milliseconds)
for each method. The time includes feature quanti-
zation and online retrieval, but not feature extrac-
tion.

BoW WGC GVP E-WGC DT DT C
TV11 173 232 227 292 217 219
TV12 625 885 851 989 875 880

WGC have a voting step to calculate the dominant trans-
formation parameters, making them slower than BoW. DT
and DT C are also slower than BoW by introducing an ex-
tra step for triangulation and graph matching. Note the
computation overhead for context modeling is negligible in
practice. However, the extra time for DT is compensated
by large performance gain. Note it takes much longer time
for TV12 than TV11 in our experiments, since the number
of features in TV12 is much more than that in TV11.

6. CONCLUSIONS
We have presented our approaches for searching instances

from video collection, in the scenario of limited number of
features for the query target and general spatial configura-
tions. For INS, making better use of the limited information,
including spatial and context cues, is critical for better per-
formance. Specifically, DT, which improves the quality of
visual matching by emphasizing the topology layouts of the
matching points, boosts true results by accumulating evi-
dence from local topology-preserving regions. To increase
the amount of information for matching, context modeling
via “stare” shows good tradeoff between exploration on in-
stances with different background and exploitation on NDs
with similar background. Our experimental result shows the
effectiveness and efficiency of our methods for the problem
of Instance Search.
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